News Release

Astragalus polysaccharide enhances voriconazole metabolism under inflammatory conditions through the gut microbiota

Peer-Reviewed Publication

Xia & He Publishing Inc.

Astragalus Polysaccharide Enhances Voriconazole Metabolism under Inflammatory Conditions through the Gut Microbiota

image: 

Astragalus Polysaccharide alleviates the reduction of VRC metabolism induced by LPS by inhibiting lipid accumulation and inflammatory cytokine levels in the serum and liver and improving the metabolic function of the liver. VRC metabolism was increased by increasing the abundance of B. bifidum in the intestine, reducing the secretion of anti-inflammatory factors in the liver, and increasing the activity of CYP2C19 . In particular, high-dose APS (600 mg/kg) more strongly improved VRC metabolism. These results provide important insights into the pharmacological mechanism of action of APS and the development of clinical preparations.

view more 

Credit: Maoxun Yang, Jinbin Wei, Xiaokang Wang, Xianjing Hu

Background and Aims

Voriconazole (VRC), a widely used antifungal drug, often causes hepatotoxicity, which presents a significant clinical challenge. Previous studies demonstrated that Astragalus polysaccharide (APS) can regulate VRC metabolism, thereby potentially mitigating its hepatotoxic effects. In this study, we aimed to explore the mechanism by which APS regulates VRC metabolism.

 

Methods

First, we assessed the association of abnormal VRC metabolism with hepatotoxicity using the Roussel Uclaf Causality Assessment Method scale. Second, we conducted a series of basic experiments to verify the promotive effect of APS on VRC metabolism. Various in vitro and in vivo assays, including cytokine profiling, immunohistochemistry, quantitative polymerase chain reaction, metabolite analysis, and drug concentration measurements, were performed using a lipopolysaccharide-induced rat inflammation model. Finally, experiments such as intestinal biodiversity analysis, intestinal clearance assessments, and Bifidobacterium bifidum replenishment were performed to examine the ability of B. bifidum to regulate the expression of the VRC-metabolizing enzyme CYP2C19 through the gut–liver axis.

 

Results

The results indicated that APS does not have a direct effect on hepatocytes. However, the assessment of gut microbiota function revealed that APS significantly increases the abundance of B. bifidum, which could lead to an anti-inflammatory response in the liver and indirectly enhance VRC metabolism. The dual-luciferase reporter gene assay revealed that APS can hinder the secretion of pro-inflammatory mediators and reduce the inhibitory effect on CYP2C19 transcription through the nuclear factor-κB signaling pathway.

 

Conclusions

APS alleviates the reduction of VRC metabolism induced by LPS by inhibiting lipid accumulation and inflammatory cytokine levels in the serum and liver and improving the metabolic function of the liver. VRC metabolism was increased by increasing the abundance of B. bifidum in the intestine, reducing the secretion of anti-inflammatory factors in the liver, and increasing the activity of CYP2C19. In particular, high-dose APS (600 mg/kg) more strongly improved VRC metabolism. These results provide important insights into the pharmacological mechanism of action of APS and the development of clinical preparations.

 

Full text

https://www.xiahepublishing.com/2310-8819/JCTH-2024-00024

 

The study was recently published in the Journal of Clinical and Translational Hepatology.

The Journal of Clinical and Translational Hepatology (JCTH) is owned by the Second Affiliated Hospital of Chongqing Medical University and published by XIA & HE Publishing Inc. JCTH publishes high quality, peer reviewed studies in the translational and clinical human health sciences of liver diseases. JCTH has established high standards for publication of original research, which are characterized by a study’s novelty, quality, and ethical conduct in the scientific process as well as in the communication of the research findings. Each issue includes articles by leading authorities on topics in hepatology that are germane to the most current challenges in the field. Special features include reports on the latest advances in drug development and technology that are relevant to liver diseases. Regular features of JCTH also include editorials, correspondences and invited commentaries on rapidly progressing areas in hepatology. All articles published by JCTH, both solicited and unsolicited, must pass our rigorous peer review process.

Follow us on X: @xiahepublishing

Follow us on LinkedIn: Xia & He Publishing Inc.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.