News Release

Fabrication of the PEKK-reinforced nano-HA composites inspired by the cortical bone

Peer-Reviewed Publication

KeAi Communications Co., Ltd.

HOW TO FABRIATE THE nHA/PEKK COMPOSITES

image: 

HOW TO FABRIATE THE nHA/PEKK COMPOSITES

view more 

Credit: ZHONGYI WANG

Nano hydroxyapatite (nHA), the primary inorganic component of bone widely utilized in bone tissue engineering, suffers from poor mechanical properties when used alone. Conversely, polyetherketoneketone (PEKK), a high-performance polymer approved by the US Food and Drug Administration (FDA) and used in dentistry and biomaterial science, struggles with bioinertia, affecting its osteogenesis applications.

In a study published in the KeAi journal Supramolecular Materials, researchers from Sichuan University, China, introduced pDA-nHA/PEKK composites that combine high strength and bioactivity.

“The optimal combination of nHA and PEKK can achieve higher mechanical property and bioactivity,” shares lead author Zhongyi Wang. “Nevertheless, conventional melt blending techniques often result in weakened strength due to nanoparticle agglomeration and the lack of chemical bonds between the inorganic and organic constituents."

To that end, the team drew inspiration from the structure of cortical bone. By employing freeze-casting technology, the researchers mimicked the bone's hierarchical structure, which is known for its exceptional stiffness and toughness. This technique allowed them to produce complex hierarchical materials. The novel approach, characterized by the in-situ polymerization of PEKK, resulted in the development of pDA-nHA scaffolds with enhanced osteo-inductive abilities and supplemented mechanical strength through PEKK.

Corresponding Haiyang Yu highlighted this development as an advancement in supramolecular materials, surpassing the strength capabilities of current methods. Yu hopes their approach to hierarchical architecture and in-situ polymerization will inspire further scientific discoveries.

###

Contact the author: Haiyang Yu, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China yhyang6812@scu.edu.cn

Qiang Wei, College of Polymer Science and Engineering State Key Laboratory of Polymer Materials and Engineering Sichuan University Chengdu, Sichuan 610065, China wei@scu.edu.cn

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.