Proteins binding to RNA are important in many processes in the cell and can mediate a range of biological functions. A specialized structure in both DNA and RNA, the G-quadruplex, are regulatory elements involved in gene expression in both DNA and RNA. In the present work the researchers use theoretical predictions and molecular biology experiments to show that many chromatin-binding proteins bind to RNA G-quadruplexes. With this information they can classify proteins based on their potential to bind RNA G-quadruplexes.
The study uses a combination of experimental identification of RNA G-quadruplex-binding proteins and computational methods to build a prediction tool that identify the probability that a protein binds to RNA G-quadruplexes. The findings show that predicted proteins show a high degree of protein disorder and hydrophilicity, suggesting an involvement in both transcription and phase-separation into membrane-less organelles.
Ulf Ørom’s group has previously shown that RNA-DNA dual binding proteins are likely to have an involvement in the DNA damage response, linking DNA and RNA binding properties to a number of proteins. In the new study, the researchers expanded the knowledge of RNA-binding proteins to identify RNA G-quadruplex binding proteins.
The researchers have also developed a computational tool to assess RNA G-quadruplex-binding potential of proteins that can be accessed at http://service.tartaglialab.com/new_submission/clever_G4_classifier.
With these new results, the researchers identify properties of protein-RNA interactions, and provide means to identify G-quadruplex binding properties that can potentially be targeted therapeutically in disease.
The findings have just been published in Nature Communications.
Journal
Nature Communications
Subject of Research
Cells
Article Publication Date
22-Mar-2024
COI Statement
None