News Release

Defects engineering of layered double hydroxide-based electrocatalyst for water splitting

Peer-Reviewed Publication

Dalian Institute of Chemical Physics, Chinese Academy Sciences

Figure Abstract

image: 

This paper reviews the research progress of layered double hydroxide (LDH) with various types of defects and its regulation strategies in recent years. Furthermore, the relationship between the catalytic activity, stability, morphology, structure, composition, and defect types of LDH are systematically discussed, aiming to deepen the understanding of the mechanism of defect-mediated LDH. Finally, the main challenges and opportunities for defect design in LDH are emphasized to shed light on the future applications.

view more 

Credit: Chinese Journal of Catalysis

In the context of the gradual depletion of fossil fuels and the energy crisis, hydrogen energy has attracted widespread attention due to its ultra-high energy density and eco-friendly properties. However, most of the hydrogen production still relies on fossil fuels, with less than 1 million tonnes produced as low-emission hydrogen in 2021, which means it has limited benefits in mitigating the energy crisis and environmental degradation. Alternatively, hydrogen production via water electrolysis has the advantages of non-polluting products, sustainable regeneration, and abundant reactant storage, making it an attractive option for further development.

Since driving the water electrolysis requires overcoming a significant overpotential, it is essential to use efficient catalysts that can reduce the overpotential. Layered double hydroxide (LDH)-based materials are considered as promising electrocatalysts for water splitting due to the advantages of unique layered structure, flexible tunability, high specific surface area and distinct electron distribution.

However, the low conductivity and limited active sites hinder the industrial applications of LDH-based electrocatalysts. On the other hand, defect engineering is an effective strategy to tune the local surface microstructure and electronic structure, which can efficiently address the drawbacks of LDH.

Recently, Prof. Deli Wang’s team from Huazhong University of Science and Technology, China, reported the recent defect fabrication strategies on LDH and systematically discussed how defects affect the electrocatalytic behavior of LDH. To begin with, the fundamental mechanism of water electrolysis and the challenges faced by LDH as an electrocatalyst for water electrolysis are presented. And then, the superiority of defect engineering for improving the electrocatalytic performance of LDH is presented and a series of defect fabrication strategies on LDH are summarized and discussed in detail. Subsequently, the relationship among catalytic activity, stability, morphology, structure, composition and defect types are emphatically analyzed and discussed. Finally, the challenges and prospects of applying defect engineering on LDH are discussed. The review was published in Chinese Journal of Catalysis (https://doi.org/10.1016/S1872-2067(23)64557-7).

###

About the Journal

Chinese Journal of Catalysis is co-sponsored by Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Chinese Chemical Society, and it is currently published by Elsevier group. This monthly journal publishes in English timely contributions of original and rigorously reviewed manuscripts covering all areas of catalysis. The journal publishes Reviews, Accounts, Communications, Articles, Highlights, Perspectives, and Viewpoints of highly scientific values that help understanding and defining of new concepts in both fundamental issues and practical applications of catalysis. Chinese Journal of Catalysis ranks among the top one journals in Applied Chemistry with a current SCI impact factor of 16.5. The Editors-in-Chief are Profs. Can Li and Tao Zhang.

At Elsevier http://www.journals.elsevier.com/chinese-journal-of-catalysis

Manuscript submission https://mc03.manuscriptcentral.com/cjcatal


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.