Direct Transfer (IMAGE) Rice University Caption Scientists at Rice University and their colleagues have enabled the direct transfer of primary amino and hydroxyl groups to arylmetals in a scalable and environmentally friendly fashion, meeting a formidable synthetic challenge. The researchers reported that bench-stable nitrogen-hydrogen and nitrogen-alkyl oxaziridines derived from biorenewable and robust terpenoid scaffolds can be used as efficient multifunctional reagents without deprotonation for the direct and primary amination and hydroxylation of (hetero)arylmetals. Credit László Kürti/Rice University Usage Restrictions None License Licensed content Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.