When Galaxies Collide: How The First Super-Massive Black Holes Were Born (2 of 3) (VIDEO)
Caption
On two accompanying videos -- here and here -- during the interaction, violent tidal forces tear the galactic disks apart, generating spectacular tidal tails, plumes and prominent bridges of material connecting the two galaxies. The ultimate outcome of a series of increasingly close encounters is the inevitable merger of the disk galaxies into a single structure and the formation of a nuclear disk as shown in the last panel. The simulated nuclear disks have masses of approximately a billion solar masses and exhibit prominent non-axisymmetric features known to produce strong gas inflows. The gas inflows are likely responsible for fueling the central black hole, but even higher resolution will be needed to study this process in detail. Nevertheless, the simulations carried out by Kazantzidis and his collaborators provide the first direct evidence that gas originally in galaxies separated by hundreds of kiloparsecs is collected to sub-parsec scales simply as a result of the dynamics and hydrodynamics involved in the merger process.
Credit
University of Zürich
Usage Restrictions
News media use only
License
Licensed content