Conventional (IMAGE) Virginia Tech Caption Conventional (A, B) and new (C) methods for synthesizing carbon fibers from various polymer precursors. (A) Pure PAN is electrospun into a fiber mat, oxidized at 280 °C in air to crosslink PAN (blue), and then pyrolyzed at 800 °C in N2 to generate carbon fibers (grey). An individual polymer fiber (purple) is magnified for illustration. (B) PAN is mixed with sacrificial PMMA (red) to form a polymer blend. After oxidation, the polymer blend macrophase-separates and forms non-uniform domains. After pyrolysis, PMMA is removed, resulting in non-uniform pores. (C) PAN-b-PMMA block copolymer microphase-separates into uniform PMMA nanodomains (red) in a matrix of PAN (blue) after oxidation and self-assembly. After pyrolysis, the porous carbon fibers contain well-controlled and uniformly distributed pores. Credit Virginia Tech Usage Restrictions None License Licensed content Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.