Termite Mound Model (IMAGE) Princeton University Caption The Princeton research shows that interactions between species (in this case, termites and plants) may play a major role in modulating and governing the impacts of climatic change. The researchers used a mathematical model and field observations to determine that drylands with termite mounds have two pattern-inducing mechanisms at work, as opposed to just the one that has been used in prior analyses of dryland desertification. Termite mounds self-organize to form a pattern on the scale of tens of meters (top and bottom left). The dense vegetation on each mound (top and bottom center) gradually thins, moving outward from the mound's center. Off the mounds, vegetation self-organizes to form a pattern on the scale of centimeters (top and bottom right), which prior models suggest can be used to determine the extent of desertification in drylands without termites. The Princeton study found that the termite-mound pattern looks similar to the vegetation-pattern thought to mark imminent desertification, but that drylands with termites are in fact much more resilient to drought than those without. Credit (Model images courtesy of <i>Science</i>/AAAS. Photos, left to right, by DigitalGlobe and courtesy of Truman Young, University of California-Davis; by Marc Stalmans, Gorongosa National Park; and by Robert Pringle, Princeton University Department of Ecology and Evolutionary Biology) Usage Restrictions None License Licensed content Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.