schematic (IMAGE) Rice University Caption Richard Baraniuk and his team at Rice University studied three variations of self-consuming training loops designed to provide a realistic representation of how real and synthetic data are combined into training datasets for generative models. Schematic illustrates the three training scenarios, i.e. a fully synthetic loop, a synthetic augmentation loop (synthetic + fixed set of real data), and a fresh data loop (synthetic + new set of real data). Credit (Image courtesy of Digital Signal Processing Group/Rice University) Usage Restrictions Must credit Digital Signal Processing Group/Rice University. License Original content Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.