Figure 1. Configuration of MeV-UED Experiment on 1,3-DBP (IMAGE)
Caption
For the experiment, an intense femtosecond ultraviolet laser pulse was employed to induce resonance-enhanced multiphoton ionization in 1,3-dibromopropane (1,3-DBP) molecules. The picosecond and angstrom spatiotemporal resolution of MeV-UED allowed for the direct visualization of the ultrafast structural changes in the ionized 1,3-DBP. Throughout this process, the molecular structure of 1,3-DBP before and after ionization was observed by measuring the diffraction patterns generated by the ultrafast electron pulses over time. Prior to ionization, the molecule remained in a neutral state, and most electron pulses moved in a straight line. Some electrons, however, interacted with the molecule, producing symmetric diffraction patterns. In contrast, after ionization, the electron beam experienced deflection by the generated ions, resulting in asymmetric diffraction patterns. The scattering patterns observed during this phase encapsulate information about the structure of the generated ions and the positive charge distribution within the ions.
Credit
Institute for Basic Science
Usage Restrictions
Attribution Required
License
Original content