Planet Forming Disks (IMAGE) NASA/Goddard Space Flight Center Caption Artist’s Concept: This artist’s concept compares two types of typical, planet-forming disks around newborn, Sun-like stars. On the left is a compact disk, and on the right is an extended disk with gaps. Scientists using Webb recently studied four protoplanetary disks—two compact and two extended. The researchers designed their observations to test whether compact planet-forming disks have more water in their inner regions than extended planet-forming disks with gaps. This would happen if ice-covered pebbles in the compact disks drift more efficiently into the close-in regions nearer to the star and deliver large amounts of solids and water to the just-forming, rocky, inner planets. Current research proposes that large planets may cause rings of increased pressure, where pebbles tend to collect. As the pebbles drift, any time they encounter an increase in pressure, they tend to collect there. These pressure traps don’t necessarily shut down pebble drift, but they do impede it. This is what appears to be happening in the large disks with rings and gaps. This also could have been a role of Jupiter in our solar system — inhibiting pebbles and water delivery to our small, inner, and relatively water-poor rocky planets. Credit NASA, ESA, CSA, Joseph Olmsted (STScI) Usage Restrictions No restrictions. License Public Domain Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.