Caption
The latest exploration of music in the natural world is taking place in Mala Murthy’s lab at the Princeton Neuroscience Institute, where Murthy and her research group have used neural imaging, optogenetics, motion capture, modeling and artificial intelligence to pinpoint precisely where and how a fruit fly’s brain toggles between its standard solo song and its mating serenade. Their research appears in the current issue of the journal Nature.
“It might be a surprise to discover that the fruit flies buzzing around your banana can sing, but it’s more than music, it’s communication,” said Murthy, the Karol and Marnie Marcin ’96 Professor and the director of the Princeton Neuroscience Institute. “It’s a conversation, with a back and forth. He sings, and she slows down, and she turns, and then he sings more. He’s constantly assessing her behavior to decide exactly how to sing. They’re exchanging information in this way. Unlike a songbird, belting out his song from his perch, he tunes everything into what she’s doing. It’s a dialogue.”
By studying how these tiny brains work, researchers hope to develop insights that will prove useful in the larger and more complex brains that are millions of times harder to study. In particular, Murthy’s team is trying to determine how the brain decides what behavior is appropriate in which context.
“He chases her and sings to her, and she chooses whether or not to slow down for him,” Murthy said. “They’ll go through this dance for 20 minutes or so, until she slows down enough to mate. He’ll sing hundreds of the ‘song bouts’ to her during their courtship.”
The simplest song bouts last only a fraction of a second, and the complex bouts can go on for several seconds.