Particle research gets closer to answering why we're here
Peer-Reviewed Publication
Updates every hour. Last Updated: 22-Apr-2025 10:08 ET (22-Apr-2025 14:08 GMT/UTC)
Researchers at Drexel University and Université catholique de Louvain (UCLouvain) in Belgium have discovered that MXenes, a type of material known for its excellent electrical conductivity, actually have very low thermal conductivity. This finding challenges the usual link between electrical and heat conduction. And the discovery could lead to new developments in building materials, performance apparel and energy storage solutions.
The overlapping effects of sea level rise, permafrost thaw subsidence, and erosion may lead to land loss in Arctic coastal regions that dwarfs the loss of land from any single one of these climate hazards, scientists say.
In a provocative new study, scientists challenge a fundamental tenet in neuroscience about the shape of axons -- the long, thin filaments radiating from nerve cells that transmit electrical signals from cell to cell – and propose a new model for understanding how information is transmitted in the brain. The study, led by Shigeki Watanabe of Johns Hopkins School of Medicine, was partly conducted in the Marine Biological Laboratory (MBL) Neurobiology course and appears this week in Nature Neuroscience.
Since the 1960s, scientists who study X-rays, lightning and similar phenomena have observed something curious: In lab experiments replicating these occurrences, electrons accelerated between two electrodes can be of a higher energy than the voltage applied. According to Penn State researchers, this defies an assumption in physics that the energy of the electrons should correspond with the voltage applied. Despite the decades-long awareness of this apparent contradiction, researchers couldn’t figure out why this was happening.
Recently, a team of Penn State researchers used mathematical modeling to explain the underlying mechanism at play. They published their results in Physical Review Letters.