Public Release: 

Multifunktionale nanodimensionale Wirkstoffträger basierend auf reaktiven Polypept(o)iden

Johannes Gutenberg Universitaet Mainz

Nanodimensionale Wirkstoffträgersysteme werden in der Medizin unter anderem genutzt, um die pharmakologischen Eigenschaften von bioaktiven Substanzen zu verbessern. Oftmals ist es für eine therapeutische Anwendung solcher Systeme wichtig, dass das Trägersystem seine Fracht im Blutstrom stabil transportiert. Idealerweise sollte sich das Trägersystem erst nach erfolgter Zellaufnahme auflösen und die eingeschlossene Fracht am Zielort freisetzen. Durch die Komplexität des biologischen Systems wurde dieses Anforderungsprofil bisher nur durch komplexe Chemie an schwer zu charakterisierenden Nanopartikeln erfüllt. Aus diesem Grund stellte eine klinische Translation der Systeme zumeist eine unüberbrückbare Herausforderung dar.

Mainzer Chemikerinnen und Chemiker um Dr. Matthias Barz vom Institut für Organische Chemie der Johannes Gutenberg-Universität Mainz (JGU) konnten in Zusammenarbeit mit Wissenschaftlern von der Universität Tokio, Japan, sowie dem Preisträger des Gutenberg Research Awards 2015, Professor Kazunori Kataoka, zeigen, dass sich reaktive Polypept(o)ide hervorragend eignen, um Morphologie und Funktion von Trägersystemen einfach und präzise zu kontrollieren. Bei Polypept(o)iden (Polysarkosin-block-Polypeptid Copolymere) handelt es sich um Hybridmaterialien, die die proteinresistenten und wasserlöslichen Eigenschaften des Polypeptoids Polysarkosin mit der Funktionalität von Polypeptiden kombinieren. In Analogie zu natürlichen Proteinen können synthetischen Polypept(o)ide auf externe Stimuli reagieren und besitzen zusätzlich intrinsisch die Fähigkeit zur Ausbildung von Sekundärstrukturen gepaart mit unterschiedlichen Funktionalitäten.

Erstmals konnte durch diese kooperative Arbeit gezeigt werden, dass sich die Ausbildung von β-Faltblattstrukturen in synthetischen Polypeptiden dazu nutzen lässt, die Morphologie von Mizellen zu kontrollieren (Klinker K et al. Angew. Chem. Int. Ed. 2017, 56 (32), 9608-9613 & Angew. Chem. 2017, 129 (32), 9737-9742), d.h. sphärische oder wurmartige Mizellen aus demselben Blockcopolymer herzustellen. Durch den Einbau reaktiver Gruppen in das Polypeptidsegment des Blockcopolymers werden die Mizellen durch den Einsatz von Dithiolen zusätzlich bio-reversibel über Disulfidbrücken vernetzt. Aufgrund des unterschiedlichen Reduktionspotentials innerhalb und außerhalb von Zellen sind die kernvernetzten Nanostrukturen im Blutstrom über Disulfide stabilisiert, zerfallen aber nach Zellaufnahme in ihre Bestandteile und setzen hierbei kontrolliert ihre Fracht frei.

„Somit ist es nun möglich ausgehend von nur einem Vorläuferpolymer eine Vielzahl polymerbasierter Nanopartikel mit unterschiedlicher Trägerfunktion durch eine einzige chemoselektive Reaktion herzustellen. Dieser modulare Ansatz zum Aufbau von Nanopartikeln mit unterschiedlicher Funktion und Morphologie bietet den eindeutigen Vorteil, dass so wichtige Fragestellungen, wie der Einfluss von Form und Größe auf Zirkulationszeit, Körperverteilung, Tumorakkumulation und Zellaufnahme unter Verwendung des gleichen Ausgangsmaterials gezielt untersucht werden können", stellt Dr. Matthias Barz fest.

Erste in vivo Experimente konnten bereits zeigen, dass die kernstabilisierten Wirkstoffträger stabil im Blut zirkulieren. Dies ist insbesondere von Bedeutung, da eine stabile Zirkulation ein erstes Indiz für die Abwesenheit von unspezifischen Wechselwirkungen mit Blutbestandteilen oder Organen darstellt. Erst durch Abwesenheit von unspezifischen Wechselwirkungen scheint eine Zellaufnahme in spezifische Zellpopulationen realisierbar. Das therapeutische Potential der beschriebenen Nanopartikelplattform wird vor allem im Rahmen des Sonderforschungsbereichs 1066 für die Immuntherapie des malignen Melanoms weiter untersucht, um den Übergang von polymeren Nanopartikeln zu effizienten Therapieformen zu gewährleisten.

###

Abb.:

http://www.uni-mainz.de/bilder_presse/09_orgchemie_nanodimensionale_wirkstofftraeger.jpg

Ausbildung von Sekundärstrukturen ermöglicht Morphologiekontrolle, während reaktive Gruppen im Peptidsegment die Einstellung der Funktion ermöglichen.

Abb./©: Kristina Klinker/Olga Schäfer

Veröffentlichung:

Klinker K, Schäfer O, Huesmann D, Bauer T, Capelôa L, Braun L, Stergiou N, Schinnerer M, Dirisala A, Miyata K, Osada K, Cabral H, Kataoka K, Barz M*.
Secondary Structure-Driven Self-Assembly of Reactive Polypept(o)ides: Controlling Size, Shape and Function of Core Cross-Linked Nanostructures.
Angew. Chem. Int. Ed. 2017, 56 (32), 9608-9613

Sekundärstrukturausbildung als Triebkraft für die Selbstassemblierung von reaktiven Polypept(o)iden: Steuerung von Größe, Form und Funktion von kernvernetzten Nanostrukturen.
Angew. Chem. 2017, 129 (32), 9737-9742

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.