Public Release: 

Magnetische Speicher mit Licht schalten - Neue Erkenntnisse zu grundlegenden Mechanismen

Helmholtz-Zentrum Berlin für Materialien und Energie

IMAGE

IMAGE: Schematischer Aufbau des Experiments. view more 

Credit: HZB

Die Arbeit wurde am 25. August 2017 in der Fachzeitschrift Scientific Reports publiziert.

Die Anforderungen an digitale Speichermedien wachsen ständig. Eine rasant zunehmende Menge an Daten und neue technische Anwendungen verlangen nach Speichern, die viele Informationen auf sehr kleinem Raum bunkern können und sich zuverlässig mit hoher Zugriffsgeschwindigkeit nutzen lassen. Besonders aussichtsreich erscheinen magnetische Datenspeicher, die mit Laserlicht beschrieben werden. An dieser neuen Technologie arbeiten Forscher seit einigen Jahren. „Bislang sind jedoch noch etliche Fragen zu den grundlegenden Mechanismen und zur genauen Funktionsweise optisch steuerbarer Magnetspeicher offen", sagt Dr. Florian Kronast, stellvertretender Leiter der Abteilung Materialien für grüne Spintronik am Helmholtz-Zentrums Berlin (HZB).

Einem Forscherteam unter seiner Leitung ist nun ein wichtiger Schritt hin zu einem besseren Verständnis der vielversprechenden Speichertechnologie gelungen. Die Wissenschaftler konnten erstmals experimentell belegen, dass die Erwärmung des Speichermaterials durch die Energie des Laserlichts eine entscheidende Rolle beim Schalten der Magnetisierung spielt und dass die Veränderung im Material nur unter bestimmten Bedingungen erfolgt.

Präzise Messungen in winzigem Laser-Lichtfleck

Die Wissenschaftler des HZB sowie der Freien Universität Berlin und der Universität Regensburg untersuchten die mikroskopischen Vorgänge hochaufgelöst beim Bestrahlen einer dünnen Schicht aus magnetischem Material mit zirkular polarisiertem Laserlicht. Dazu richteten sie das Licht eines Infrarotlasers auf eine nanometerdünne Schicht der Legierung TbFe aus den Metallen Terbium und Eisen. Die experimentelle Besonderheit: Der eng fokussierte Lichtfleck des Lasers hatte einen Durchmesser von nur drei Mikrometern. „Das ist weit weniger als bei bisherigen Experimenten üblich war", sagt HZB-Wissenschaftlerin Ashima Arora, die Erstautorin der Studie. Und es ermöglichte den Forschern eine bislang einzigartige Detailschärfe bei der Untersuchung der Phänomene. Die Abbildungen der magnetischen Domänen in der Legierung, die das Team mithilfe von Röntgenlicht aus der Synchrotron-Strahlungsquelle BESSY II erstellte, offenbarte Feinheiten selbst von 30 Nanometer Größe.

Das Entscheidende geschieht im Ring

Die Resultate der Messungen zeigen: Um den schmalen Laserfleck herum bildet sich ein ringförmiger Bereich, der zwei magnetisch unterschiedliche Regionen voneinander trennt. Innerhalb des Rings ist das zuvor vorhandene Muster der Magnetisierung durch die Erwärmung vollständig ausgelöscht. In der Zone außerhalb bleibt es dagegen in der ursprünglichen Form erhalten. In dem schmalen Ring dazwischen stellt sich eine Temperaturverteilung ein, die eine Änderung der Magnetisierung durch Verschieben der Domänenränder ermöglicht. „Nur dort spielt sich das Schalten der Magneteigenschaften ab, bei einem Speicher also das Ablegen der Daten", erklärt Arora.

Überraschender Einfluss der Schichtdicke

„Diese neuen Erkenntnisse werden helfen, optisch gesteuerte Magnetspeicher mit den bestmöglichen Eigenschaften zu entwickeln", meint Florian Kronast. Zu einem besseren Verständnis der dafür wichtigen physikalischen Prozesse trägt ein weiterer Effekt bei, den die Forscher am HZB erstmals und überraschend beobachtet haben: Die Art, wie das Schalten der Magnetisierungen geschieht, hängt empfindlich von der Dicke der mit Laserlicht bestrahlten Materialschicht ab. Sie ändert sich bei einem Wert der Schichtdicke zwischen 10 und 20 Nanometern.

„Das ist ein deutliches Indiz, dass zwei unterschiedliche Mechanismen eine Rolle spielen und miteinander konkurrieren", erklärt Kronast. Er und sein Team haben dafür zwei komplexe physikalische Effekte im Verdacht. Um ihn zu bestätigen, sind aber weitere experimentelle und theoretische Untersuchungen nötig.

###

Die Arbeit wurde in Scientific Reports (DOI 10.1038/s41598-017-09615-1) publiziert: „Spatially resolved investigation of all optical magnetization switching in TbFe alloys". Ashima Arora, Mohammad-Assaad Mawass, Oliver Sandig, Chen Luo, Ahmet A. Ünal, Florian Radu, Dergio Valencia, Florian Kronast.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.