News Release

Tracking adeno-associated virus capsid evolution

Peer-Reviewed Publication

Mary Ann Liebert, Inc./Genetic Engineering News

Human Gene Therapy

image: The Official Journal of the European Society of Gene and Cell Therapy and eight other international gene therapy societies, was the first peer-reviewed journal in the field and provides all-inclusive access to the critical pillars of human gene therapy: research, view more 

Credit: Mary Ann Liebert Inc., publishers

New Rochelle, NY, March 18, 2020--Researchers have used high-throughput screening of adeno-associated viral (AAV) vector capsid libraries to maximize the likelihood of obtaining AAV variants with desired properties. As a result of these experiments, they gained some unexpected insights, reported in an article published in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click here to read the full-text article free on the Human Gene Therapy website through April, 18 2020.

Mark Kay and colleagues from Stanford University (Stanford, CA) coauthored the article entitled "Tracking Adeno-Associated Virus Capsid Evolution by Thigh-Throughput Sequencing." The researchers used high-throughput screening of barcoded AAV capsid libraries to track directed AAV capsid evolution. The ultimate goal is to be able to more quickly identify improved recombinant AAV vectors for use in clinical gene therapy trials.

Among the most important findings was the following: it is not essential to use multiple rounds of selection, and this may in fact be counterproductive. Functional and efficient AAV variants were obtained after only one round of selection. Additionally, infection with a high multiplicity of infection (MOI) is preferable to infection with a low MOI, as the use of low MOIs results in more variation between screens and is not optimal at selecting the most desired capsids. Furthermore, competition can take place between AAVs with specific capsids in cells that. Have been infected with different AAVs. Other key findings are outlined in the article.

"This cutting-edge work by Dr. Kay and his Stanford colleagues is helping to make directed evolution of AAV capsids less of a 'black box'," says Editor-in-Chief Terence R. Flotte, MD, Celia and Isaac Haidak Professor of Medical Education and Dean, Provost, and Executive Deputy Chancellor, University of Massachusetts Medical School, Worcester, MA. "His insights are likely to result in the discovery of important novel capsids that might otherwise be overlooked."

###

About the Journal

Human Gene Therapy, the Official Journal of the European Society of Gene and Cell Therapy and eight other international gene therapy societies, was the first peer-reviewed journal in the field and provides all-inclusive access to the critical pillars of human gene therapy: research, methods, and clinical applications. The Journal is led by Editor-in-Chief Terence R. Flotte, MD, Celia and Isaac Haidak Professor of Medical Education and Dean, Provost, and Executive Deputy Chancellor, University of Massachusetts Medical School, and an esteemed international editorial board. Human Gene Therapy is available in print and online. Complete tables of contents and a sample issue are available on the Human Gene Therapy website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Nucleic Acid Therapeutics, Tissue Engineering, Stem Cells and Development, and Cellular Reprogramming. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 90 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.