This clear, gooey substance, which is naturally produced by the human body, has been popularized by cosmetic and skin care products that promote healthier, plumper and more supple skin. Also recognized for its abilities to speed up wound healing, reduce joint pain from osteoarthritis, and relieve dry eye and discomfort, a neuroscientist at Florida Atlantic University's Brain Institute (I-BRAIN) and Schmidt College of Medicine, has discovered a novel mechanism and role in the brain for hyaluronic acid.
In a study published in the journal Brain, Behavior and Immunity, Ning Quan, Ph.D., lead author, a professor of biomedical science in FAU's Schmidt College of Medicine and a member of I-BRAIN, and collaborators, have discovered that hyaluronic acid may be the key in how an immune signal moves from the blood stream to the brain, activating the brain's resident immune cells, the microglia.
This unsuspected molecule may be the main signal passed between these cells, and this new discovery could lead to novel opportunities to shut down brain inflammatory responses. Findings from this study have important implications for better treatments for stroke, neurodegenerative diseases, as well as head injuries.
"We normally think of hyaluronic acid with respect to cartilage formation and also for its role in many processes including cancer progression and metastasis," said Quan. "However, what we have uncovered in our study is a completely unique role for this molecule. We have been able to document a connection between the blood cells and the brain cells, showing that the activating signal passed between these cells is hyaluronic acid."
Quan and collaborators from the Sichuan University, The Ohio State University, and the University of Illinois Urbana-Champaign, demonstrate that inflammation in the central nervous system is oftentimes quenched or restricted, as neurons are extremely vulnerable to inflammation-caused damages. However, this inflammation can be aberrantly amplified through endothelial cell-microglia crosstalk when the brain constantly receives inflammatory signals. Quan's work identified hyaluronic acid as the key signal released by endothelial cells to stimulate microglia and promote oxidative damage.
"To prevent the inflammation from being intensified in the brain, you have to stop the communication between the two cell types," said Xiaoyu Liu, Ph.D., another corresponding author of the study in FAU's Schmidt College of Medicine and I-BRAIN. "We found ascorbyl palmitate, also known as 'Vitamin C Ester,' to be quite effective in inhibiting microglia and reducing the production of inflammatory hyaluronic acid."
In the past, Vitamin C Ester has been widely used as a source of vitamin C and an antioxidant food additive. Now, this latest discovery suggests a novel function of Vitamin C Ester: treating central nervous system inflammation.
"As the newest addition to our Department of Biomedical Science, Dr. Quan's work already is making an important impact on our mission to advance understanding of human health and disease," said Janet Robishaw, Ph.D., senior associate dean for research and chair of the Department of Biomedical Science in FAU's Schmidt College of Medicine. "Long known as a popular skin and joint supplement, this discovery identifies a novel role for hyaluronic acid to potentially treat conditions caused by inflammation in the central nervous system."
Inflammation can occur in the central nervous system as a result of head trauma or stroke, or as part of a systemic immune response. Inflammation within the central nervous system has been associated with chronic neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and multiple sclerosis.
"Neurological disorders such as Parkinson's disease and Alzheimer's disease impact all races, genders, and geographical backgrounds," said Randy Blakely, Ph.D., executive director of FAU's I-BRAIN. "Findings from this study may thus have global implications for how we treat neurodegeneration arising from traumatic brain injuries and brain changes associated with aging and dementia. This exceptional research by Dr. Quan and his colleagues is a testament to the cutting-edge work that is being conducted by our Brain Institute members and the research faculty in FAU's Schmidt College of Medicine."
###
This research is funded by the National Institute of Mental Health of the National Institutes of Health (R01-MH-109165) awarded to Quan.
About the Charles E. Schmidt College of Medicine:
FAU's Charles E. Schmidt College of Medicine is one of approximately 152 accredited medical schools in the U.S. The college was launched in 2010, when the Florida Board of Governors made a landmark decision authorizing FAU to award the M.D. degree. After receiving approval from the Florida legislature and the governor, it became the 134th allopathic medical school in North America. With more than 70 full and part-time faculty and more than 1,300 affiliate faculty, the college matriculates 64 medical students each year and has been nationally recognized for its innovative curriculum. To further FAU's commitment to increase much needed medical residency positions in Palm Beach County and to ensure that the region will continue to have an adequate and well-trained physician workforce, the FAU Charles E. Schmidt College of Medicine Consortium for Graduate Medical Education (GME) was formed in fall 2011 with five leading hospitals in Palm Beach County. In June 2014, FAU's College of Medicine welcomed its inaugural class of 36 residents in its first University-sponsored residency in internal medicine and graduated its first class of internal medicine residents in 2017.
About the FAU Brain Institute:
Inaugurated in 2016 on the John D. MacArthur Campus in Jupiter, Fla., the FAU Brain Institute, supports research, education and community outreach among more than 100 faculty level researchers at FAU and its affiliate research centers. One of FAU's four research pillars that guide the University's goals and strategic actions, the Institute seeks to unlock the secrets of brain development, function and plasticity and how the mechanisms uncovered can be compromised to drive devastating brain disorders. From the study of neuronal development and signaling to investigations of brain diseases including addiction, autism, Parkinson's and Alzheimer's disease, researchers from FAU's Brain Institute seek to generate knowledge that benefits society. For more information about the Institute and its members, visit http://www.ibrain.fau.edu.
About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University, with an annual economic impact of $6.3 billion, serves more than 30,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida. FAU's world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of critical areas that form the basis of its strategic plan: Healthy aging, biotech, coastal and marine issues, neuroscience, regenerative medicine, informatics, lifespan and the environment. These areas provide opportunities for faculty and students to build upon FAU's existing strengths in research and scholarship. For more information, visit fau.edu.