News Release

Muscle-like material expands and contracts in response to light (video)

Peer-Reviewed Publication

American Chemical Society

Muscle-Like Material Expands And Contracts In Response To Light (Video)

image: A polymer (left; beige material) contracts in blue light (right). view more 

Credit: Jonathan Barnes

ORLANDO, Fla., April 2, 2019 -- Just as controlled-release medications slowly dole out their cargo after they experience a pH change in the body, implanted "artificial muscles" could someday flex and relax in response to light illuminating the skin. In pilot studies, scientists have developed a new material that expands and contracts, lifting a weight merely by shining a light on it.

The researchers will present their results today at the American Chemical Society (ACS) Spring 2019 National Meeting & Exposition. ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features nearly 13,000 presentations on a wide range of science topics.

A brand-new video on the research is available at http://bit.ly/HLS_Artificial_Muscle.

"We have developed a new polymer that has a novel mechanism for actuating materials -- making materials shrink, expand or hold a 'memory' of a particular shape -- all with a simple stimulus," says Jonathan Barnes, Ph.D.

Stimuli-responsive materials have been applied in many different industries to date. For example, some of them change color and are used as windshield coatings to instantly shade drivers in blinding sun. Other materials can be formed into vessels that respond to changes in nutrient concentrations and feed agricultural crops as needed. Still other applications are in the biomedical area.

Barnes and his team at Washington University in St. Louis (WUSTL) are running their new polymer through its paces to determine what it is particularly suited for. But the main goal has been to see whether the material can do work, a trait that could facilitate development of an artificial muscle.

During graduate school, Barnes studied a group of molecules, known as viologens, that change color with the addition and subtraction of electrons. Barnes suspected that if these molecules were linked together, they would fold like an accordion because areas that accept a single electron recognize one another. He also wondered if the action of the folding molecules could make a 3D network move, and if he could make the process reversible.

To address these issues, Barnes' team at WUSTL synthesized polymer chains with viologens in their backbones. When a blue LED light was shone on the molecules, they folded into pleats with the help of well-known photoredox catalysts that can transfer electrons to the viologens. The researchers next incorporated the polymers into a flexible, water-soluble 3D hydrogel. When the team shone light on the gel, the accordion effect that occurred within the molecule tugged the gel in on itself, causing the material to shrivel to one-tenth its original size. When the light was turned off, the material expanded. As the polymer-embedded hydrogel changed form, it also changed color.

"The beauty of our system is that we can take a little bit of our polymer, called a polyviologen, and put it in any type of 3D network, turning it into a stimuli-responsive material," Barnes says. Less than one percent of the weight of the hydrogel needs to contain polyviologen to get a response. So the polymer doesn't impose a significant effect on the other properties of the material in which it is contained.

To find out if the material could do work, the group attached the gel to a strip of electrical tape with a piece of wire at the end. They suspended a small weight from the wire and hung the hydrogel in front of a blue light. The gel lifted the weight -- which was about 30 times the mass of the embedded polyviologen -- and after five hours, it rose several centimeters.

The group has now made other tweaks, including making the gels stronger and more elastic, and making them move faster. And the researchers have developed polymers that respond to multiple stimuli at once. They also have constructed gels that respond to light at different wavelengths. Materials that respond to red or near-infrared light, which can penetrate human tissue, could be used in biomedical applications, such as drug-delivery devices or, eventually, as artificial muscles.

Barnes says that his group has only begun to test the limits of these new materials. Currently, the team is studying the self-healing properties of polyviologen-embedded hydrogels, and they are exploring the possibility of 3D printing the polymers into different types of materials.

A press conference on this topic will be held Tuesday, April 2, at 10:30 a.m. Eastern time in the Orange County Convention Center. Reporters may check-in at the press center, Room W231B, or watch live on YouTube http://bit.ly/ACSLive_Orlando2019 ("ACSLive_Orlando2019" is case sensitive). To ask questions online, sign in with a Google account.

The researchers acknowledge support and funding from the David and Lucille Packard Foundation Fellowship in Science and Engineering and Washington University in St. Louis.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook

Title Sequence-defined redox-responsive polymers as artificial molecular muscles

Abstract Nature relies on sequence-defined polymers to carry out a wide range of functions, such as the precise folding of a protein to establish a catalytic active site, or the matching of base pairs in two strands of DNA during replication or transcription for example. Recently, synthetic polymer chemists have devoted a lot of time and resources to coming up with new methods to control the sequence of monomers in synthetic polymers for the purpose of preparing digitally encoded polymers or bioactive macrocycles, to name a few examples. My research group is interested in stimuli-responsive materials that can actuate - i.e., change their size, shape, and mechanical properties reversibly in response to an external stimulus - and more specifically, whether sequence-defined polymers can impact this actuation process. In my talk I will describe the iterative step-growth-like syntheses of oligo- and polyviologens consisting of 4,4?-bipyridinium subunits (a.k.a., viologens) spaced on either side by different polar and non-polar groups that are known to affect the bulk physical properties of a polymer - e.g., crystallinity, Tg, etc. - and how these sequence-defined redox-responsive polymers perform in a series of hydrogel actuators. In each case, I will highlight the ability of each material to function as an artificial molecular muscle.

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.