News Release

Scientists identify two new species of fungi in retreating Arctic glacier

Peer-Reviewed Publication

Research Organization of Information and Systems

Two New Species of Fungi

image: Two new species of fungi isolated from sediments and soil in the Canadian Arctic (A)micrographic image of Vishniacozyma ellesmerensis (B) colonies of V. ellesmerensis (C) micrographic image of Mrakia hoshinonis (D) colonies of M. hoshinonis view more 

Credit: NIPR

Two new species of fungi have made an appearance in a rapidly melting glacier on Ellesmere Island in the Canadian Arctic, just west of Greenland. A collaborative team of researchers from Japan's National Institute of Polar Research, The Graduate University for Advanced Studies in Tokyo, Japan, and Laval University in Québec, Canada made the discovery.

The scientists published their results on 3 January 2019 in two separate papers (DOI:10.1099/ijsem.0.003206 and 10.1099/ijsem.0.003216), one for each new species, in the International Journal of Systematic and Evolutionary Microbiology.

"The knowledge of fungi inhabiting the Arctic is still fragmentary. We set out to survey the fungal diversity in the Canadian High Arctic," said Masaharu Tsuji, a project researcher at the National Institute of Polar Research in Japan and first author on both papers. "We found two new fungal species in the same investigation on Ellesmere Island."

One species is the 10th to join the genus Mrakia, with the proposed name M. hoshinonis, in honor of Tamotsu Hoshino, a senior researcher at the National Institute of Advanced Science and Technology in Japan. Hoshino has made significant contributions to the study of fungi in polar regions. The other species is the 12th to join the genus Vishniacozyma, with the proposed name V. ellesmerensis as a nod to the island where it was found. Both species are types of yeast that are well-adapted to the cold and can even grow below 0°C.

The samples of fungi were collected from the unofficially named Walker Glacier. The designation comes from Paul T. Walker, who installed the datum pole that measures the glacier's growth and shrinkage, in 1959. At the time of sample collection in 2016, measurements showed that the glacier was receding at a rate two-and-a-half times faster than its retreat over the previous 50 years.

"Climate-related effects have been observed in this region over the last 20 years," Tsuji said. "Soon, some of the glaciers may completely melt and disappear."

Only about five percent of fungi species have been discovered, but their function across ecological climates is well understood - from the tropics to the Arctic, fungi decompose dead organic material. Each species operates a little differently, but their general role is to reintroduce nutrients from dead plant material back into the ecosystem. If the glaciers melt, the fungi lose their habitat. The results could have catastrophic knock-on effects throughout the ecosystem, according to Tsuji, although more research is needed to understand exactly how the changing climate is influencing fungi beyond destroying their habitat.

Next, Tsuji and his team plan to survey the fungi in Ward Hunt Lake, the northern most lake in the world. It is on Ward Hunt Island, just off the northern coast of Ellesmere Island, and less than 500 miles from the North Pole

"Normally, the lake's ice doesn't melt during the summer season. However, the ice melted completely in 2016. We plan to continuously check how the lake's fungal diversity changes," Tsuji said. The different species could evolve, or, potentially, go extinct. "Eventually, we plan to compile all of our studies to provide an overview of terrestrial ecosystems in the Arctic and Antarctic regions."

###

This work was supported by the National Institute of Polar Research, the Japan Society for the Promotion of Science, the Institution for Fermentation, Osaka for a Young Scientist, and the Arctic Challenge for Sustainability provided by Japan's Ministry of Education, Culture, Sports, Science and Technology.

Other authors include Yukiko Tanabe, an assistant professor, and Masaki Uchida, an associate professor, both of whom are affiliated with the National Institute of Polar Research in Japan and Department of Polar Science at The Graduate University for Advanced Studies in Tokyo, Japan. Warwick Vincent, a professor in the Department of Biology and Centre for Northern Studies (CEN) at Laval University in Québec, Canada, was also an author on the paper and led the expedition to this remote Arctic region.

About National Institute of Polar Research (NIPR)

The NIPR engages in comprehensive research via observation stations in Arctic and Antarctica. As a member of the Research Organization of Information and Systems (ROIS), the NIPR provides researchers throughout Japan with infrastructure support for Arctic and Antarctic observations, plans and implements Japan's Antarctic observation projects, and conducts Arctic researches of various scientific fields such as the atmosphere, ice sheets, the ecosystem, the upper atmosphere, the aurora and the Earth's magnetic field. In addition to the research projects, the NIPR also organizes the Japanese Antarctic Research Expedition and manages samples and data obtained during such expeditions and projects. As a core institution in researches of the polar regions, the NIPR also offers graduate students with a global perspective on originality through its doctoral program. For more information about the NIPR, please visit: https://www.nipr.ac.jp/english/

About the Research Organization of Information and Systems (ROIS)

The Research Organization of Information and Systems (ROIS) is a parent organization of four national institutes (National Institute of Polar Research, National Institute of Informatics, the Institute of Statistical Mathematics and National Institute of Genetics) and the Joint Support-Center for Data Science Research. The mission of ROIS is to promote integrated, cutting-edge research that goes beyond the barriers of these institutions, in addition to facilitating their research activities, as members of inter-university research institutes.

The coordination of these institutions, facilitated by ROIS, will contribute to opening new areas of research and performing integrated transdisciplinary research. This framework will allow a holistic approach to the complex issues of life, earth, environmental and social sciences, including the generation of large scale and heterogeneous data from observations, measurements and experiments, knowledge extraction from these data, discovery of scientific truths, technological advancements in database construction and implementation. ROIS will also widely share with the community, the outcomes, resources and research platforms necessary for new frontiers of research.

Informatics methodologies utilized to elucidate complex systems, research and development related to advanced usage of databases and networks, in addition to operation of databases and networks will also enable ROIS to serve as an information platform that will support rapid and effective development of research both in Japan and abroad.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.