News Release

Space-inspired speed breeding for crop improvement

Peer-Reviewed Publication

John Innes Centre

Technology first used by NASA to grow plants extra-terrestrially is fast tracking improvements in a range of crops. Scientists at John Innes Centre and the University of Queensland have improved the technique, known as speed breeding, adapting it to work in vast glass houses and in scaled-down desktop growth chambers.

The ability to work at these scales gives scientists greater opportunities than ever before to breed disease resistant, climate resilient and nutritious crops to feed a growing global population. The research is published in the peer reviewed journal Nature Protocols.

Speed breeding uses enhanced LED lighting and day-long regimes of up to 22 hours to optimise photosynthesis and promote rapid growth of crops. It speeds up the breeding cycle of plants: for example, six generations of wheat can be grown per year, compared to two generations using traditional breeding methods.

By shortening breeding cycles, the method allows scientists and plant breeders to fast-track genetic improvements such as yield gain, disease resistance and climate resilience in a range of crops such as wheat, barley, oilseed rape and pea.

Being able to do this in a compact desktop chamber enables affordable, cutting-edge research on a range of crops to take place before the experiments are scaled up to larger glass houses.

The latest advances come at a crucial time for European crop development. They follow a decision this summer by the Court of Justice of the European Union which ruled that crops improved using modern gene-editing techniques should be classed as genetically modified organisms.

The decision was greeted with dismay among many leading plant scientists, breeders and farming industry leaders in the UK, because it frustrates efforts to meet the challenge of a growing world population.

Dr Brande Wulff a wheat scientist at the John Innes Centre and one of the lead authors on the paper explains that European crop research and breeding will become more dependent on speed breeding in the light of these developments.

"Speed breeding allows researchers to rabidly mobilise the genetic variation found in wild relatives of crops and introduce it into elite varieties that can be grown by farmers. The EU ruling that heavily regulates gene editing means we are more reliant on speed breeding to grow sturdier, more resilient crops."

Dr Wulff's team at the John Innes Centre has developed techniques such as rapid gene discovery and cloning that, alongside speed breeding, would allow crop improvements via a non-GM route.

Collaborators in Australia - currently experiencing one of the worst droughts on record - are using the technology to rapidly cycle genetic improvements to make crops more drought resilient.

Dr Wulff predicts the speed breeding technology will become the norm in research institutes: "We know that more and more institutes across the world will be adopting this technology and by sharing these protocols we are providing a pathway for accelerating crop research."

The refinements, outlined in this study, aim to optimise the technology as a research tool. Changes to soil/media composition, lighting, temperature, spacing of plants and premature seed harvest have led to the team cutting down the seed-to-seed generation time in wheat to just eight weeks.

This means the speed breeding technology allows six generations of wheat to be grown per year, compared to two generations using traditional breeding methods.

Sreya Ghosh, first author on the paper, from the John Innes Centre, highlights the benefit of making the technology accessible to more researchers.

"It was important to us that we developed something that could be bought quickly and set up with minimum skill.

"This scaled down cabinet means the technology is accessible and democratic. Researchers all over the world can set it up on their desk to get the benefits of speed breeding for their research programme."

Generation time in most plant species represents a bottleneck in applied research programmes and breeding. Tackling this bottleneck means scientists can respond quicker to emerging diseases, changing climate and increased demand for certain traits

###

The full report: http://dx.doi.org./10.1038/s41596-018-0072-z.

Pictures/Media and captions:

https://drive.google.com/open?id=1_XPwbsHqcnfswDL4tAUkB4jYsXSNecUU

Video content: https://youtu.be/QAUJqmOkmKk

--

Notes for Editors

Contacts

Press Contact: Adrian Galvin - Adrian.Galvin@jic.ac.uk">Adrian.Galvin@jic.ac.uk">Adrian.Galvin@jic.ac.uk">Adrian.Galvin@jic.ac.uk
Tel: 01603 450238

About the John Innes Centre

The John Innes Centre is an independent, international centre of excellence in plant science and microbiology.

Our mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, to apply our knowledge of nature's diversity to benefit agriculture, the environment, human health, and wellbeing, and engage with policy makers and the public.

To achieve these goals we establish pioneering long-term research objectives in plant and microbial science, with a focus on genetics. These objectives include promoting the translation of research through partnerships to develop improved crops and to make new products from microbes and plants for human health and other applications. We also create new approaches, technologies and resources that enable research advances and help industry to make new products. The knowledge, resources and trained researchers we generate help global societies address important challenges including providing sufficient and affordable food, making new products for human health and industrial applications, and developing sustainable bio-based manufacturing.

This provides a fertile environment for training the next generation of plant and microbial scientists, many of whom go on to careers in industry and academia, around the world.

The John Innes Centre is strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC). The John Innes Centre is also supported by the John Innes Foundation through provision of research accommodation and long-term support of the Rotation PhD programme.

For more information about the John Innes Centre visit our website http://www.jic.ac.uk

About BBSRC

The Biotechnology and Biological Sciences Research Council (BBSRC) is part of UK Research and Innovation, a non-departmental public body funded by a grant-in-aid from the UK government.

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by government, BBSRC invested £469 million in world-class bioscience in 2016-17. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals

For more information about BBSRC, our science and our impact see: http://www.bbsrc.ac.uk

For more information about BBSRC strategically funded institutes see: http://www.bbsrc.ac.uk/institutes


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.