Public Release: 

FASEB Journal: Caloric intake and muscle mass at high altitude

Federation of American Societies for Experimental Biology

New research in The FASEB Journal explored why a group of young, healthy adults residing at high altitude lost muscle mass while severely underfed and consuming the same high-protein diet that preserved muscle during weight loss at sea level.

A team led by Stefan M. Pasiakos, PhD, a nutritional physiologist at the U.S. Army Research Institute of Environmental Medicine, examined eight participants from a larger randomized controlled study. The larger study compared the effects of standard versus high-protein diets on a group of healthy young men hiking at high altitude who experienced increased exercise levels and decreased caloric intake.

Pasiakos and colleagues found that the combination of unaccustomed high-altitude exposure and negative caloric balance resulted in the development of anabolic resistance, or inability to build muscle mass -- a phenomenon mainly observed in older adults.

"Findings from our study show that after prolonged exposure to environmental stress and underfeeding, the body's ability to build and repair muscle was suppressed," Pasiakos explains. "These data highlight the fundamental relationship between caloric balance and skeletal muscle, and suggest that if efforts to maximize food intake are not prioritized during high-altitude sojourns, muscle mass will be lost."

The study underscores the importance of maintaining caloric balance at high altitudes, especially among unaccustomed lowlanders. The findings could also have potential implications for individuals with chronic obstructive pulmonary disease (COPD), which decreases oxygen delivery to the body and is often accompanied by both weight loss and lean mass loss.

"Although this study was cast in a high-altitude context, it has revealed unanticipated and potentially broader metabolic complexity that may apply at sea level," said Thoru Pederson, PhD, Editor-in-Chief of The FASEB Journal. "One cannot resist saying this work takes the subject to a higher level."

###

This research was supported, in part, by the U.S. Army Medical Research and Materiel Command.

The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). The world's most cited biology journal according to the Institute for Scientific Information, it has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century. Receive monthly highlights for The FASEB Journal; subscribe at http://www.faseb.org/fjupdate.aspx.

FASEB is composed of 30 societies with more than 130,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and well-being by promoting research and education in biological and biomedical sciences through collaborative advocacy and service to our societies and their members.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.