News Release

Cation-mixing induced highly efficient sodium storage for layered cathodes

Peer-Reviewed Publication

Science China Press

Structural Evolution of NNCT Electrode During the First Cycle

image: Structural evolution of NNCT electrode during the first cycle. In-situ XRD patterns collected for NNCT electrode cycled in the voltage range of 2.0-4.0 V (a); STEM images of the pristine (bottom), fully charged (middle), and fully discharged (top) NNCT electrodes (b) and the corresponding line profiles (c); Schematic illustration of the structural evolution of NNCT electrode during charge/discharge (d). view more 

Credit: ©Science China Press

Sodium is one of the most abundant elements, widely distributed on the earth and in the ocean. Thus, sodium-ion batteries attract much attention due to the application in large-scale energy storage. The most popular cathodes for SIBs, i.e., the layered sodium-containing oxides, usually exhibit reversible host rearrangement between P-type and O-type stacking upon charge/discharge. Herein such host rearrangement is unfavorable due to the fact: (1) the O-type phase is undesirable relative to the P-type, as the latter possesses more open framework for Na-ion transport; (2) the rearrangements of host structure indicate sluggish reaction dynamics, which contributes to the voltage hysteresis and poor rate capability of the electrode; (3) the large variation in lattice parameters between P-type and O-type leads to elastic strain, causing the loss of active material and the resulting capacity fade.

On the basis of the above reasons, Haoshen Zhou and Shaohua Guo's Group from Nanjing University synthesized the O3-type Na0.8Ni0.3Co0.1Ti0.6O2 (NNCT), and found that NNCT electrode exhibited the cation-mixing characteristic by introducing transition-metal ions into Na layers during initial charge, thus suppressing host rearrangement upon charge/discharge by the induced "pinning effect". Moreover, the O-type phase is undesirable relative to the P-type, as the latter possesses more open framework for Na-ion transport. Consequently, the NNCT with stable P3-stacking after initial charge process exhibits superior rate capability, high energy efficiency and excellent cycling performance. This group characterized structural evolution during electrochemical sodium insertion/extraction by in-situ XRD and ex-situ STEM experiments. Fig. 1 shows the structural evolution of NNCT electrode during the first cycle. NNCT transforms to P3-type in the initial charge process as most others, but unexpectedly maintains the P3-stacking in the subsequent cycles. STEM results indicate the presence of transition-metal ions in sodium layers at charged NNCT electrode, exhibiting the cation-mixing phenomenon.

The electrochemical performances of NNT and NNCT cathodes were comparatively studied in Fig. 2. The almost overlap curves suggest the high reversibility of NNCT with a reversible capacity of 92 mAh* g-1 at 0.05C rate. The discharge curves show a high capacity retention (92%) and negligible voltage degradation (0.03V) over 300 cycles are observed. The round-trip energy efficiency is stabilized at 93% for the NNCT electrode, and the Coulombic efficiency of NNCT cathode is around 99.7%. More importantly, NNCT cathode performs excellent long-term cycling performance, i.e., 98% capacity retention after 1000 cycles.

This work for the first time proposed the "pinning effect" induced by introducing cation-mixing could effectively suppress the phase transition and relative host arrangement, thus greatly enhancing the structural stability. The findings underline the critical role of stable sodium storage framework, and also open a new path for design of high-efficiency energy storage materials.

###

More information found in the source text: Shaohua Guo, Yang Sun, Pan Liu, Jin Yi, Ping He, Xiaoyu Zhang, Yanbei Zhu, Ryosuke Senga, Kazu Suenaga, Mingwei Chen, Haoshen Zhou, Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries, Science Bulletin, 2018, 63(6): 376-384, DOI: 10.1016/j.scib.2018.02.012 https://www.sciencedirect.com/science/article/pii/S2095927318300896?via%3Dihub

Acknowledgements: National Basic Research Program of China (2014CB932300), NSF of China (21373111, 21633003 and 51602144) and Jiangsu Province (BK20170630)


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.