News Release

Study: Silk-based devices with antisense-miRNA therapeutics may enhance bone regeneration

Peer-Reviewed Publication

Mary Ann Liebert, Inc./Genetic Engineering News

<em>Tissue Engineering, Part A</em>

image: Tissue Engineering brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. view more 

Credit: Mary Ann Liebert, Inc., publishers

New Rochelle, NY, April 24, 2018--Researchers have incorporated therapeutic microRNAs (miRNAs) into bioresorbable, silk-based medical devices such as screws and plates to achieve local delivery of factors that can improve bone growth and mineralization at the site of bone repair. The study, which demonstrated the promise of silk-based orthopedic devices combined with bioactive miRNA-based therapeutics, is published in Tissue Engineering, Part A, peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Tissue Engineering website until May 24, 2018.

Eric James, Emily Van Doren, Chunmei Li, and David Kaplan, Tufts University, Medford, MA describe the method they used to deliver the antisense therapeutic miR-214 in the article entitled "Silk Biomaterials-Mediated miRNA Functionalized Orthopedic Devices." The article is part of an upcoming special issue of Tissue Engineering on "RNA Therapeutics for Tissue Engineering" led by Guest Editors Elizabeth Balmayor, PhD, Technical University of Munich, Germany and Christopher Evans, PhD, DSc, Mayo Clinic, Rochester, MN.

The researchers coated the surface of bioresorbable silk-based devices used in bone repair with antisense-miR-214 and also studied the use of antisense-miR-214 silk films seeded with human mesenchymal stem cells (hMSCs). The results showed that miR-214 was released continuously for up to 7 days in vitro and could block the production of proteins that downregulate new bone formation.

"This study leverages tissue engineering principles for the design of medical devices with enhanced biocompatibility," says Tissue Engineering Co-Editor-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX.

###

Research reported in this publication was supported by the National Institutes of Health under Award Numbers R02 AR068048 and R01DE016525. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and John P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Leadership of Tissue Engineering Parts B (Reviews) and Part C (Methods) is provided by Katja Schenke-Layland, PhD, Eberhard Karls University, Tübingen and John A. Jansen, DDS, PhD, Radboud University, respectively. Complete tables of content and a sample issue may be viewed online at the Tissue Engineering website. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed on the Tissue Engineering website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.