News Release

Another blow to fungal infection

For the first time, researchers have isolated a natural resistance gene to Septoria, Europe's most economically damaging wheat disease and a fungal threat to wheat crops globally

Peer-Reviewed Publication

Rothamsted Research

<em>Septoria tritici</em> Blotch in Wheat

image: Around 70 percent of the fungicides used on wheat in Europe are aimed at controlling the fungal pathogen that causes Septoria leaf blotch, which can cut yields by up to 50 percent in humid and temperate areas. view more 

Credit: Rothamsted Research

What is so encouraging about the first successful unpicking of a wheat gene that confers resistance to a devastating fungal disease is the promise it holds for deciphering other resistance genes, en route to a natural barrier to infection, at a time when the fungus has already developed tolerance to most types of fungicides.

The gene, called Stb6, confers resistance to Septoria tritici blotch (STB, or Septoria), the main leaf disease of wheat in temperate regions and a major threat for wheat production globally, capable of halving crop yields. The disease is caused by the resilient fungal pathogen, Zymoseptoria tritici.

Although the presence of the gene has been known for nearly 20 years, the gene's mapping and isolation have taken five years to complete. The work, from an Anglo-French team led by Kostya Kanyuka at Rothamsted Research and Cyrille Saintenac at the National Institute for Agricultural Research (INRA), is reported today in Nature Genetics.

"Isolation of Stb6 is a major breakthrough that will allow deeper understanding of disease resistance mechanisms operating in wheat against this important pathogen," says Kanyuka. "In the long term, it should also help us to develop better disease control strategies."

Saintenac agrees: "Identification of the Stb6 gene was made possible through the dedicated efforts of international collaborators. It paves the way to new Stb genes' discoveries and to a better management of this devastating wheat disease."

Kanyuka notes that the Stb6 gene is effective against only a fraction of fungal strains, specifically those strains that secrete a matching protein, called AvrStb6. The Stb6 protein somehow recognises this fungal protein, which leads to activation of the defence response in wheat.

"Nevertheless, this gene will be useful in combination with other STB resistance genes, and our study provides tools for rapid lab-based tracing of Stb6 in wheat breeding lines," says Kanyuka.

Kanyuka also highlights the gene's importance in better understanding of the fundamental science of disease control. Most resistance genes, in wheat and other plants, code for protein receptors located inside cells; the Stb6 gene codes for a receptor protein on the cell's surface.

"This knowledge will facilitate identification and isolation of additional resistance genes for improved control of Septoria," adds Kanyuka.

For Cristobal Uauy, a wheat geneticist at the John Innes Centre who was also part of the Anglo-French team, the work "exemplifies the collaboration between Rothamsted and JIC in developing sequenced mutant populations and how sharing these resources with our international partners allowed the team to identify and characterise more quickly this important gene."

###

NOTES TO EDITORS

Publication: Wheat receptor kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici [link live after publication; for embargoed copies, contact bill.oneill@rothamsted.ac.uk]

Images: Rothamsted Flickr

Rothamsted Research contacts:
Kostya Kanyuka, Functional Genomics Scientist
Department of Biointeractions and Crop Protection
Tel: +44 (0) 1582 938 232
E-mail: kostya.kanyuka@rothamsted.ac.uk

Susan Watts, Head of Communications
Tel: +44 (0) 1582 938 109
Mob: +44 (0) 7964 832 719
E-mail: susan.watts@rothamsted.ac.uk

About Rothamsted Research

Rothamsted Research is the oldest agricultural research institute in the world. We work from gene to field with a proud history of ground-breaking discoveries. Our founders, in 1843, were the pioneers of modern agriculture, and we are known for our imaginative science and our collaborative influence on fresh thinking and farming practices. Through independent science and innovation, we make significant contributions to improving agri-food systems in the UK and internationally. In terms of its economic contribution, the cumulative impact of our work in the UK exceeds £3000 million a year (Rothamsted Research and the Value of Excellence, by Séan Rickard, 2015). Our strength lies in our systems approach, which combines science and strategic research, interdisciplinary teams and partnerships. Rothamsted is also home to three unique resources. These National Capabilities are open to researchers from all over the world: The Long-Term Experiments, Rothamsted Insect Survey and the North Wyke Farm Platform. We are strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC), with additional support from other national and international funding streams, and from industry.

For more information, visit https://www.rothamsted.ac.uk/; Twitter @Rothamsted

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond. Funded by Government, BBSRC invested over £469M in world-class bioscience in 2016-17. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

National Institute for Agricultural Research (INRA) contacts:
Cyrille Saintenac, INRA researcher
Joint Research Unit for Genetics, Diversity and Ecophysiology of Cereals
INRA - Université Clermont Auvergne
Tel: + 33 (0) 4 43 76 15 26
E-mail: cyrille.saintenac@inra.fr

Catherine Foucaud-Scheunemann, Media Communications
Tel: +33 1 (0) 1 42 75 91 69
E-mail: catherine.foucaud-scheunemann@inra.fr

About National Institute for Agricultural Research (INRA)

Institut National de la Recherche Agronomique is the largest agricultural research institute in Europe, with 8,417 researchers, engineers, and technicians (02/2018), and is the second largest producer of agricultural science publications. INRA contributes to development of knowledge and innovation in the fields of food, agriculture, and the environment. INRA carries out its work across 13 scientific divisions through a research network that is unique in Europe, with more than 200 research units and 50 experimental units located in 17 research centres throughout France. Its aim is to contribute internationally to the development of healthy, high-quality food, competitive and sustainable agriculture, and a protected and valued environment.

John Innes Centre contacts:
Cristobal Uauy, Wheat Geneticist
Tel: +44 (0) 1603 450 195
E-mail: cristobal.uauy@jic.ac.uk

Adrian Galvin, Communications and Media Manager
Tel: +44 (0) 1603 450 238
E-mail: adrian.galvin@jic.ac.uk

About John Innes Centre

The John Innes Centre is an independent, international centre of excellence in plant science, research, genetics and microbiology. The research we do makes use of a wide range of disciplines in biological and chemical sciences, including microbiology, cell biology, biochemistry, chemistry, genetics, molecular biology, computational and mathematical biology. We receive funding from the UK Biotechnology and Biological Sciences Research Council (BBSRC) for four Institute Strategic Programs (ISPs) that directly address BBSRC strategic objectives in food security, human health and industrial biotechnology: Genes in the Environment; Plant Health (in partnership with The Sainsbury Laboratory); Molecules from Nature; Designing Future Wheat (a cross-institute strategic programme).


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.