News Release

Oncotarget: Researchers identify a potential molecular trigger for invasiveness in prostate cancer cells

An editorial on this research article from Xin Ye and Robert A. Weinberg of the Whitehead Institute for Biomedical Research titled 'The SUMO guards for SNAIL' can be found online

Peer-Reviewed Publication

Impact Journals LLC

Oncotarget: Interview with Dr. Marene Landstrom & Dr. Reshma Sundar

video: VIDEO: Interview with Dr. Marene Landstrom & Dr. Reshma Sundar with the Department of Medical Biosciences, Umeå University Sweden talking about their experience publishing "Pro-invasive properties of Snail1 are regulated by sumoylation in response to TGFβ stimulation in prostate cancer." view more 

Credit: Oncotarget

ORCHARD PARK, New York - (Nov. 20, 2017) - A small protein modification can trigger the aggressive migratory and invasive properties of prostate cancer cells, according to new research published on the cover of Oncotarget. The findings give greater insight into how cancers can move from one location in the body to another, and could help develop more effective therapies in the future.

When cells break free from the original tumor and migrate to another location through the bloodstream, they become metastatic. The emergence of secondary tumors is often correlated with a poor prognosis.

The cellular process that allows these cells to migrate is known as epithelial-to-mesenchymal transition (EMT). One of the proteins thought to activate EMT is called transforming growth factor β (TGFβ), which exerts its effects by activating several other proteins, including one called Snail1. While the activation of Snail1 is recognized as an important event in EMT, how it happens has remained unclear. Revealing this mechanism could give scientists a way to target EMT, thus preventing cancer metastasis.

The Oncotarget study, carried out by researchers from two Swedish universities, Umeå University and Uppsala University, now reveals a key step in Snail1 modification. The team found that modifying a single amino acid - the building block that makes up proteins - can alter Snail1 and make cancer cells grown in the lab more invasive. This modification, called 'sumoylation,' involves the attachment of other small proteins, which change the structure and function of Snail1. Importantly, the researchers found that preventing the sumoylation of Snail1 by genetic modification abolished the migratory and invasive properties in human prostate cancer cells.

The team also found that modified Snail1 regulated the expression of specific genes and proteins involved in EMT. Furthermore, the researchers identified that in prostate cancer cells, sumoylated-Snail1 can further enhance TGFβ signaling and EMT in prostate cancer. Lastly, when they compared the levels of proteins involved in EMT in prostate cancer tissues and normal tissues, they found levels of several proteins including Snail1 were elevated in the cancer.

"These results suggest that sumoylation of Snail1 might be a marker for prostate cancer progression," said Professor Marene Landström. "As sumoylation inhibitors are currently being tested to combat the development of breast cancer tumors, it would be interesting to see the effects of targeting Snail1 sumoylation in prostate cancer."

Future studies in different cancers is necessary to understand whether sumoylated-Snail1 is a universal trigger for cancer cell invasiveness.

###

About Oncotarget

Oncotarget is a twice-weekly, peer-reviewed, open access biomedical journal covering research on all aspects of oncology and publishing sub-sections on topics beyond oncology such as Aging, Immunology and Microbiology, Autophagy, Pathology and Chromosomes and more. Oncotarget is published by Rapamycin Press, the publishing division of Impact Journals LLC.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.