Public Release: 

Essential quantum computer component downsized by two orders of magnitude

Researchers at IST Austria have built compact photon directional devices; their micrometer-scale, nonmagnetic devices route microwave photons and can shield qubits from harmful noise

Institute of Science and Technology Austria

IMAGE

IMAGE: The new nonreciprocal device acts as a roundabout for photons. Here, arrows show the direction of photons propagation. view more 

Credit: IST Austria/ Birgit Rieger

Qubits, or quantum bits, are the key building blocks that lie at the heart of every quantum computer. In order to perform a computation, signals need to be directed to and from qubits. At the same time, these qubits are extremely sensitive to interference from their environment, and need to be shielded from unwanted signals, in particular from magnetic fields. It is thus a serious problem that the devices built to shield qubits from unwanted signals, known as nonreciprocal devices, are themselves producing magnetic fields. Moreover, they are several centimeters in size, which is problematic, given that a large number of such elements is required in each quantum processor. Now, scientists at the Institute of Science and Technology Austria (IST Austria), simultaneously with competing groups in Switzerland and the United States, have decreased the size of nonreciprocal devices by two orders of magnitude. Their device, whose function they compare to that of a traffic roundabout for photons, is only about a tenth of a millimeter in size, and--maybe even more importantly--it is not magnetic. Their study was published in the open access journal Nature Communications.

When researchers want to receive a signal, for instance a microwave photon, from a qubit, but also prevent noise and other spurious signals from traveling back the same way towards the qubit, they use nonreciprocal devices, such as isolators or circulators. These devices control the signal traffic, similar to the way traffic is regulated in everyday life. But in the case of a quantum computer, it is not cars that cause the traffic but photons in transmission lines. "Imagine a roundabout in which you can only drive counterclockwise", explains first author Dr. Shabir Barzanjeh, who is a postdoc in Professor Johannes Fink's group at IST Austria. "At exit number one, at the bottom, there is our qubit. Its faint signal can go to exit number two at the top. But a signal coming in from exit number two cannot travel the same path back to the qubit. It is forced to travel in a counterclockwise manner, and before it reaches exit one, it encounters exit three. There, we block it and keep it from harming the qubit."

The 'roundabouts' the group has designed consist of aluminum circuits on a silicon chip and they are the first to be based on micromechanical oscillators: Two small silicon beams oscillate on the chip like the strings of a guitar and interact with the electrical circuit. These devices are tiny in size--only about a tenth of a millimeter in diameter--, one of the major advantages the new component has over its traditional predecessors, which were a few centimeters wide.

Currently, only a few qubits have been used to test the principles of quantum computers, but in the future, thousands or even millions of qubits will be connected together, and many of these qubits will require their own circulator. "Imagine building a processor that has millions of such centimeter-size components. It would be enormous and impractical," says Shabir Barzanjeh. "Using our nonmagnetic and very compact on-chip circulators instead makes life a lot easier." Yet some hurdles need to be overcome before the devices will be used for this specific application. For example, the available signal bandwidth is currently still quite small, and the required drive powers might harm the qubits. However, the researchers are confident that these problems will turn out to be solvable.

Professor Johannes Fink joined IST Austria in the beginning of 2016. He and his group study quantum physics in electrical, mechanical and optical chip-based devices with the main objective of advancing and integrating quantum technology. Earlier this year, he received a prestigious ERC Starting Grant for his project to develop a fiber optic transceiver for superconducting qubits, as well as a research grant from the Swiss NOMIS foundation. Dr. Shabir Barzanjeh was awarded a Marie Sk?odowsa-Curie fellowship to work at IST Austria. His main interests are in circuit quantum electrodynamics and optomechanics. From February 12 to 14, 2018, Johannes Fink und Shabir Barzanjeh will host the international conference „Frontiers of Circuit QED and Optomechanics" (FCQO 2018) in Klosterneuburg with the aim to bring together leading scientists in the field. Registration is already open: https://ist.ac.at/fcqo18

###

IST Austria

The Institute of Science and Technology (IST Austria) is a PhD granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students at its international graduate school. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. http://www.ist.ac.at

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.