Public Release: 

Pharmacoscopy improves therapy for relapsed blood cancer in a first clinical trial

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences

IMAGE

IMAGE: These are patient cells imaged by pharmacoscopy. view more 

Credit: CeMM/Gregory Vladimer

Researchers at CeMM and the Medical University of Vienna presented a preliminary report in Lancet Hematology on the clinical impact of an integrated ex vivo approach termed pharmacoscopy. The procedures measure single-cell drug responses of millions of individual cells to hundreds of possible treatments in small biopsies from cancer patients. The interims analysis of the first-ever clinical trial with the approach, published in the current issue of the journal The Lancet Haematology, highlights the potential of the method: 88.2% of patients receiving pharmacoscopy-guided treatment achieved partial or complete remission, compared to 23.5% to their own previous treatment. Further, the median progression-free survival increased four-fold. Retrospectively, pharmacoscopy also predicted the response of AML patients to first-line treatment with 90% accuracy. These results show that pharmacoscopy can assist decision-making of the responsible clinicians effectively and thus represent a powerful tool for practical precise and personalized medicine.

(Vienna, November 13, 2017) Patients suffering from refractory and relapsed blood cancers often have few treatment options and short survival times. At this stage, identifying effective therapies can be challenging for doctors. Even state-of-the-art genetic analyses, due to the high heterogeneity of cancer cells and the impact of the various mutations on their drug response, do often not suffice to instruct personalized treatments. Pharmacoscopy, a technology developed by scientists at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences and tested for its clinical efficacy by clinicians of the Medical University of Vienna, offers a functional approach: hundreds of drug options can be quickly pre-tested ex vivo in small liquid biopsy samples collected from individual patients.

The effects of each drug on the individual cells are quantified using high-throughput and high-content automated confocal microscopy. In combination with specially developed analysis methods and machine learning and other unique algorithms, pharmacoscopy allows quantification of never-before visualized phenotypes. The method was first presented last April in Nature Chemical Biology (doi:10.1038/nchembio.2360).

The multidisciplinary team publishing the current study is spearheaded by Giulio Superti-Furga, Scientific Director of CeMM and Professor at the Center for Physiology and Pharmacology of Medical University of Vienna together with Professor Philip Staber, Program Director for Lymphoma, Chronic Lymphatic Leukemia, and T-cell Lymphoma of the Medical University of Vienna.

While the clinical study is still recruiting, interim analysis of the program showed that 88.2% of the patients recruited (15 out of 17) who received pharmacoscopy-monitored personalized therapies achieved partial or complete remission, while only 23.5% (4 out of 17) responded similarly well to their previous respective treatments.

In addition, the median progression-free survival of patients who were treated in accordance to pharmacoscopy-guided therapy increased from 5.7 week to 22.6 weeks compared to their last line of treatment. Further, in a retrospective study organized to specifically determine the ability of the method to stratify responding and non-responding newly-diagnosed patients with acute myeloid leukemia (AML), resulted in 90% accuracy. Before, such accuracy in prediction of treatment outcome was unachievable, with or without genetic assays.

"Having a robust, fast, and reliable predictive test at our disposal during the patient treatment process, especially at the time of relapse where a new intervention must be selected quickly, will change how medical doctors prioritize drugs to use for late-stage patients" says Philipp Staber, principal investigator of the clinical trial.

"Evidence that the pharmacoscopy approach is helpful for clinical evaluation of therapy is wonderful. Single-cell functional analysis of primary material gives unprecedented resolution and precision that we are sure to further develop in the future to address yet more diseases", adds Giulio Superti-Furga, whose goal at the beginning of activities of the Research Center for Molecular Medicine ten years ago was to create scientific advancements able to positively impact medical practice.

###

Explanatory video of the Pharmacoscopy-method: https://vimeo.com/229561929

The study "Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study" was published in The Lancet Haematology on November 13, 2017. DOI: 10.1016/S2352-3026(17)30208-9

Authors: Berend Snijder*, Gregory I Vladimer*, Nikolaus Krall, Katsuhiro Miura, Ann-Sofie Schmolke, Christoph Kornauth, Monika Sabler, Oscar Lopez de la Fuente, Hye-Soo Choi; Emiel van der Kouwe; Sinan Gültekin, Lukas Kazianka, Johannes Bigenzahn, Gregor Hörmann, Nicole Prutsch, Olaf Merkel, PhD; Anna Ringler; Georg Jeryczynski, Marius Mayerhöfer, Ingrid Simonitsch-Klupp, Katharina Ocko, Franz Felberbauer, Leonhard Müllauer, Gerald W Prager, Belgin Korkmaz, Lukas Kenner, Wolfgang R Sperr, Robert Kralovics, Heinz Gisslinger, Peter Valent, Stefan Kubicek, Ulrich Jäger, Philipp B Staber, and Giulio Superti-Furga.

The study was supported by the European Research Council (ERC), the Austrian Science Fund (FWF), Austrian National Bank, the Austrian Federal Ministry of Science, Research and Economy, the National Foundation for Research, Technology and Development, the MPN Research Foundation, the Swiss National Science Foundation and the European Molecular Biology Organization (EMBO).

The mission of CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences is to achieve maximum scientific innovation in molecular medicine to improve healthcare. At CeMM, an international and creative team of scientists and medical doctors pursues free-minded basic life science research in a large and vibrant hospital environment of outstanding medical tradition and practice. CeMM's research is based on post-genomic technologies and focuses on societally important diseases, such as immune disorders and infections, cancer and metabolic disorders. CeMM operates in a unique mode of super-cooperation, connecting biology with medicine, experiments with computation, discovery with translation, and science with society and the arts. The goal of CeMM is to pioneer the science that nurtures the precise, personalized, predictive and preventive medicine of the future. CeMM trains a modern blend of biomedical scientists and is located at the campus of the General Hospital and the Medical University of Vienna. http://www.cemm.at

The Medical University of Vienna is one of the most traditional medical education establishments with nearly 7,500 students and approximately 5,500 staff members, and one of the most important top-level biomedical research institutions in Europe. Its international outlook is one of its most important pillars and the research focus is centered on immunology, cancer research, imaging, brain research and cardiovascular diseases. https://www.meduniwien.ac.at/web/en

For further information please contact

Mag. Wolfgang Däuble
Media Relations Manager
CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences
Lazarettgasse 14, AKH BT 25.3
1090 Vienna, Austria
Phone +43-1/40160-70 057
Fax +43-1/40160-970 000
wdaeuble@cemm.oeaw.ac.at
http://www.cemm.at

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.