News Release

Chromosome organization emerges from 1-D patterns

Rice University, Baylor College of Medicine use epigenetic marks to predict how DNA folds

Peer-Reviewed Publication

Rice University

Chromosome (1 of 2)

image: Researchers at Rice University and Baylor College of Medicine have developed a computational pipeline to convert one-dimensional ChIP-sequencing data about DNA to three-dimensional structures of human chromosomes. view more 

Credit: Ryan Cheng/Michele Di Pierro

HOUSTON - (Oct. 31, 2017) - The DNA in a human cell is 2 yards long and wraps around millions of bead-like histone proteins to fit inside the cell's nucleus. Researchers at Rice University and Baylor College of Medicine showed that examining the chemical state of these proteins makes it possible to predict how an entire DNA chromosome will fold.

Researchers based at Rice's Center for Theoretical Biological Physics (CTBP) have constructed computer models to analyze epigenetic marks, which include proteins bound to DNA as well as chemical modifications to histone proteins. They harvested the information encoded in these markings to predict how the chromosomes fold in three dimensions.

Their findings move the field of genetics closer to the ability to predict the folded structure of entire genomes, which could someday help identify misfolding-related genetic diseases.

The work appears this week in the Proceedings of the National Academy of Sciences.

Packed into the nucleus, DNA folds into a functional form that differs in various types of cells. Because every cell in an organism contains the same DNA, epigenetic marks help it find the right form for the type of cell it inhabits.

"Something on top of the genetic code tells the cell what it's supposed to be and determines which parts of the chromosome are going to be read at any given time," said biophysicist Peter Wolynes, a co-author of the paper. "These are the so-called epigenetic marks."

Collectively, epigenetic marks help package the genome into the loose but highly organized compartments it adopts during interphase, the working "middle age" in the life of a cell. These compartments bring transcription-related genes into close proximity and allow them to communicate and function.

Epigenetic marks can be revealed by an established technique called ChIP-sequencing, which maps protein-binding sites along DNA.

"We don't understand exactly how the genome gets marked, but we can measure it through ChIP-sequencing, which has become a fairly straightforward experiment," Wolynes said. "In the same way that we can view genetic code (the DNA), we can also measure these marks directly in many different cells. They've become the next layer of sequence on the genome."

"It's another tier of information," said co-author and biophysicist José Onuchic. "Every one of your cells' DNA is the same. However, different kinds of cells have different epigenetics, so their expression patterns are different."

Co-lead authors and Rice postdoctoral fellows Michele Di Pierro and Ryan Cheng used ChIP-sequencing data for a human lymphoblast cell that probes 84 different DNA-binding proteins and 11 chemical modifications of histones. Histone proteins help organize the genome by acting as spools around which DNA wraps.

Using data from just some of the chromosomes, they trained a custom neural network called MEGABASE (Maximum Entropy Genomic Annotation from Biomarkers Associated with Structural Ensembles) to output a sequence of chromatin types. That revealed how the epigenetic marks were related to the compartments, they said. Once trained, they validated the MEGABASE model by feeding it data from the remaining chromosomes. That produced a fresh set of structural types for analysis by the Rice team's MiChroM program, a cousin of the lab's AWSEM energy landscape algorithm that predicts the structures of proteins. The MiChroM algorithm predicted the 3-D structures of the chromosomes.

"Our findings support the idea that compartmentalization in chromosomes arises from the phase separation of different chromatin types in the nucleus, like the separation of oil and water," Cheng said.

When the researchers reduced the original dataset to just the 11 histone markings and ran the calculations again, the results were only marginally different. Ultimately, they determined histone data alone are sufficient to predict a chromosome's form. "There's a well-defined code that connects the histone markings to the structure," Di Pierro said. "It's well-conserved, so it's likely that it has a function."

To validate their theory, the researchers compared their results with contact maps of lymphoblast cells generated by Hi-C. This experimental technique, which uses high-throughput sequencing to identify folding patterns in DNA, was developed by co-author Erez Lieberman Aiden, director of Baylor's Center for Genome Architecture and a senior investigator at the CTBP.

"This paper says we can take one-dimensional information about histones and use it with our big-data tools to predict three-dimensional structure," Wolynes said.

Their success gets the team closer to the ultimate goal of a theory that predicts the architecture of an entire genome. However, a chicken-or-the-egg problem remains: Does chromatin fold because of the markers, or do the markers appear because of the folding?

"It's all part of our fascination with how life works," Di Pierro said. "It's a beautiful problem."

###

Onuchic is the Harry C. and Olga K. Wiess Chair of Physics, a professor of physics and astronomy, of chemistry and of biosciences at Rice and co-director of the CTBP. Wolynes is the D.R. Bullard-Welch Foundation Professor of Science, a professor of chemistry, of biochemistry and cell biology, of physics and astronomy and of materials science and nanoengineering at Rice and a senior investigator at the CTBP.

The research was supported by the National Science Foundation, the Welch Foundation, the National Institutes of Health, the National Human Genome Research Institute, the NVIDIA Research Center, an IBM University Challenge award, Google Research, the Cancer Prevention and Research Institute of Texas and the McNair Medical Institute.

David Ruth
713-348-6327
david@rice.edu
Mike Williams
713-348-6728
mikewilliams@rice.edu

Read the abstract at http://www.pnas.org/content/early/2017/10/30/1714980114.abstract

This news release can be found online at http://news.rice.edu/2017/10/31/chromosome-organization-emerges-from-1-d-patterns/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Core proteins exert control over DNA function: http://news.rice.edu/2016/06/21/core-proteins-exert-control-over-dna-function-2/
Rice biophysicists model genome mechanics: http://news.rice.edu/2016/09/26/rice-biophysicists-model-genome-mechanics-2/
Onuchic bio: https://en.wikipedia.org/wiki/José_Onuchic
Wolynes bio: https://chemistry.rice.edu/FacultyDetail.aspx?p=ACC7DC090095C11C
Aiden Lab: http://www.aidenlab.org
Center for Theoretical Biological Physics: https://ctbp.rice.edu
Rice Department of Bioengineering: http://bioe.rice.edu

Images for download:

http://news.rice.edu/files/2017/10/1030_CHROMOSOME-1-WEB-299zjiv.jpg
Researchers at Rice University and Baylor College of Medicine have developed a computational pipeline to convert one-dimensional ChIP-sequencing data about DNA to three-dimensional structures of human chromosomes. (Credit: Ryan Cheng/Michele Di Pierro)

http://news.rice.edu/files/2017/10/1030_CHROMOSOME-2-WEB-2ki3uce.jpg
Experiments at Rice University and Baylor College of Medicine show how segments of chromatin with the same epigenetic marking patterns localize together in a process related to phase separation. Naked DNA is decorated by epigenetic markings that encode the three-dimensional arrangement of chromosomes. The genome architecture and marking patterns are characteristics of the cell type, in this case a nerve cell with its characteristic myelin sheath. (Credit: Sigrid Knemeyer/Center for Theoretical Biological Physics at Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.