News Release

New tool for cell-free therapy based on artificial membrane vesicles

Scientists at Kazan Federal University's Institute of Fundamental Medicine and Biology, led by Professor Albert Rizvanov, have shown that artificial membrane vesicles generated by cytochalasin B treatment of human cells retain angiogenic activity

Peer-Reviewed Publication

Kazan Federal University

Scientists at Kazan Federal University's Institute of Fundamental Medicine and Biology, led by Professor Albert Rizvanov, have shown that artificial membrane vesicles generated by Cytochalasin B treatment of human cells retain angiogenic activity.

Vesicles are small packages of material released from cells and act to deliver cargo and messages to adjacent and distant cells. Recently there is intense interest in vesicles as they have been shown to be important regulators of normal physiology and have also been implicated in disease, notably cancer.

Extracellular vesicles exhibit biological activity of a cell from which they originate. For example, extracellular vesicles of stem cells are able to promote angiogenesis and regeneration. For this reason extracellular vesicles represent a promising tool for cell-free therapy to deliver biologically active molecules. However the yield of naturally occurring vesicles is too low for practical purposes. Recently several studies demonstrated the ability to generate a large amount of membrane vesicles from cultured cells treated with a drug, Cytochalasin B. This cost effective approach permits the generation of large quantities of extracellular vesicles. However it remained unknown whether these Cytochalasin B-induced micro-vesicle (CIMVs) retained similar biological properties of their parental cells.

To address this, an international team of investigators, led from Kazan Federal University, Russia by Professor Albert Rizvanov, and involving Dr Richard Pestell (Pennsylvania Biotechnology Center, USA), Dr Nigel Mongan (University of Nottingham, UK), Professor Jenny Persson (Lund University, Sweden), characterized the biological activity of membrane vesicles.

The study to be published in Oncotarget (July 31, 2017). The lead author, Dr. Marina Gomzikova, and colleagues described the morphology, molecular composition, fusion capacity and biological activity of Cytochalasin B-induced membrane vesicles (CIMVs). This data suggests that the biophysical, molecular and size distribution properties of CIMVs are similar to natural vesicles. Furthermore they demonstrated that CIMVs retain the biological properties of the donor cells, as they can stimulate angiogenesis in vitro and in vivo.

Professor Rizvanov commented that now CIMVs can be produced in large quantities and scaled to an industrial production level, potential therapeutic applications to deliver biologically active molecules of CIMVs are now possible.

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.