News Release

How do zebrafish develop their stripes?

Cardiff University mathematician discovers key aspect underlining distinctive patterns of the zebrafish

Peer-Reviewed Publication

Cardiff University

A Cardiff University mathematician has thrown new light on the longstanding mystery of how zebrafish develop the distinctive striped patterns on their skin.

In a new study, Dr Thomas Woolley has simulated the intricate process that sees the pigmented skin cells of the zebrafish engaged in a game of cat and mouse as they chase after each in the early developmental stages before resting to create a final pattern.

Dr Woolley discovered that a key factor is the angles at which the cells chase after each other, and these angles can determine whether a zebrafish develops its distinctive stripes, broken stripes, polka-dot patterns or sometimes no pattern at all.

The findings have been presented in the journal Physical Review E.

Rather than have a pattern ingrained in their genetic code, zebrafish start their lives as transparent embryos before developing iconic patterns over time as they grow into adults. As is often the case in nature, many possible mutations exist and this can dictate the pattern that develops in the zebrafish.

Several researchers have studied how and why these pattern form and have concluded that it's a result of three types of pigment cells interacting with one other. More specifically, black pigment cells (melanophores), yellow pigment cells (xanthophores) and silvery pigment cells (iridophores), chase after each other until a final pattern is reached.

As hundreds of these chases play out, the yellow cells eventually push the black cells into a position to form a distinct pattern.

Dr Woolley, from Cardiff University's School of Mathematics, said: "Experimentalists have demonstrated that when these two types of cells are placed in a petri dish, they appear to chase after each other, a bit like pacman chasing the ghosts. However, rather than chase each other in straight lines, they appear to be chasing each other in a spiral.

"My new research has shown that the angle at which the cells chase after each other is crucial to determining the final pattern that we see on different types of zebrafish."

In his study, Dr Woolley performed a number of computer simulations that took a broad view of how cells move and interact when the zebrafish is just a few weeks old. Different patterns were then spontaneously generated depending on the chasing rules.

By experimenting with different chasing angles in his simulations, Dr Woolley was able to successfully recreate the different patterns that are exhibited by zebrafish.

###

Notes to editors:

1. For further information contact:

Michael Bishop
Communications & Marketing
Cardiff University
Tel: 02920 874499 / 07713 325300
Email: BishopM1@cardiff.ac.uk

2. Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities and is a member of the Russell Group of the UK's most research intensive universities. The 2014 Research Excellence Framework ranked the University 5th in the UK for research excellence. Among its academic staff are two Nobel Laureates, including the winner of the 2007 Nobel Prize for Medicine, Professor Sir Martin Evans. Founded by Royal Charter in 1883, today the University combines impressive modern facilities and a dynamic approach to teaching and research. The University's breadth of expertise encompasses: the College of Arts, Humanities and Social Sciences; the College of Biomedical and Life Sciences; and the College of Physical Sciences and Engineering, along with a longstanding commitment to lifelong learning. Cardiff's flagship Research Institutes are offering radical new approaches to pressing global problems. http://www.cardiff.ac.uk


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.