Public Release: 

When the rubber hits the road: Recycled tires create stronger concrete

University of British Columbia

IMAGE

IMAGE: Figure 1 from Hudspith and Belcher: Grayscale photographs of post-burn residues containing char and ash from flowers and associated vegetative material. A: Spikes of Anemopsis californica. B: Spadix of Spathiphyllum... view more 

Credit: Geology, Victoria A. Hudspith and Claire M. Belcher

UBC engineers have developed a more resilient type of concrete using recycled tires that could be used for concrete structures like buildings, roads, dams and bridges while reducing landfill waste.

The researchers experimented with different proportions of recycled tire fibres and other materials used in concrete -- cement, sand and water -- before finding the ideal mix, which includes 0.35 per cent tire fibres, according to researcher Obinna Onuaguluchi, a postdoctoral fellow in civil engineering at UBC.

Recycled-rubber roads are not new; asphalt roads that incorporate rubber "crumbs" from shredded tires exist in the U.S., Germany, Spain, Brazil and China. But using the polymer fibres from tires has the unique benefit of potentially improving the resilience of concrete and extending its lifespan.

"Our lab tests showed that fibre-reinforced concrete reduces crack formation by more than 90 per cent compared to regular concrete," said Onuaguluchi. "Concrete structures tend to develop cracks over time, but the polymer fibres are bridging the cracks as they form, helping protect the structure and making it last longer."

UBC civil engineering professor Nemkumar Banthia, who supervised the work, says the environmental and industrial impact of the research is crucial. Up to three billion tires are produced around the world every year, generating close to three billion kilograms of fibre when recycled.

"Most scrap tires are destined for landfill. Adding the fibre to concrete could shrink the tire industry's carbon footprint and also reduce the construction industry's emissions, since cement is a major source of greenhouse gases," said Banthia, who also is scientific director of UBC-hosted Canada-India Research Center of Excellence (IC-IMPACTS), a centre that develops research collaborations between Canada and India.

"We use almost six billion cubic metres of concrete every year," added Banthia. "This fibre can be in every cubic metre of that concrete."

The new concrete was used to resurface the steps in front of the McMillan building on UBC's campus in May. Banthia's team is tracking its performance using sensors embedded in the concrete, looking at development of strain, cracking and other factors. So far, the results support laboratory testing that showed it can significantly reduce cracking.

###

The research, described in a paper published in Materials and Structures has received support from IC-IMPACTS; Tire Stewardship B.C., the nonprofit that manages British Columbia's tire recycling program; Atlantis Holdings Inc.; and recycler Western Rubber Products Ltd, which processed the fibres.

Flickr album: https://www.flickr.com/photos/ubcpublicaffairs/albums/72157681570828543

Video (dropbox): https://www.dropbox.com/sh/wagkt8walm5ohib/AADyZtn9maB-AC43ttP1MOGha?dl=0

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.