News Release

Stem cells may significantly improve tendon healing by regulating inflammation

New research in The FASEB Journal suggests the potential of tendon stem cells to improve healing and treatment for acute tendon injuries and chronic tendon disease

Peer-Reviewed Publication

Federation of American Societies for Experimental Biology

New research published online in The FASEB Journal suggests that tendon stem (TSCs) may be able to significantly improve tendon healing by regulating inflammation, which contributes to scar-like tendon healing and chronic matrix degradation. This has implications for the treatment of acute tendon injuries and chronic tendon disease.

"Inflammation plays a critical role in acute and chronic tendon injuries and healing," said Chang H. Lee, Ph.D., a researcher involved in the work and an assistant professor at the Regenerative Engineering Laboratory (Columbia University Irving Medical Center, New York). "Our findings represent an important foundation for the development of a new treatment that would regulate overwhelmed inflammation for tendon ruptures and tears, tendonitis, tendinopathy, and other tendon injuries and diseases."

In their study, Lee and colleagues used both in vitro human models and in vivo rat models. In vitro, isolated TSCs were stimulated with proinflammatory cytokines (proteins that can influence interactions between cells), and the expression of genes involved in inflammatory regulation was measured. In vivo, the researchers evaluated inflammatory responses by TSCs, including infiltration of macrophages (white blood cells that consume damaged or dead cells) and expression of anti-/proinflammatory cytokines, at different time points. Connective tissue growth factor (CTGF) was used in both models to stimulate the anti-inflammatory roles of TSCs. The researchers found that CTGF stimulation induced TSCs' production of anti-inflammatory cytokines, consequently leading to improved tendon healing and matrix remodeling.

"Many would have predicted that tendon healing is inflammation-linked," said Thoru Pederson, Ph.D., Editor-in-Chief of The FASEB Journal, "but that the anti-inflammatory roles of TSCs could be so potent, and so amplifiable, is a striking finding."

###

Submit to The FASEB Journal by visiting http://fasebj.msubmit.net, and receive monthly highlights by signing up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is the world's most cited biology journal according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 30 societies with more than 125,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Solaiman Tarafder, Esther Chen, Yena Jun, Kristy Kao, Kun Hee Sim, Jungho Back, Francis Y. Lee, and Chang H. Lee. Tendon stem/progenitor cells regulate inflammation in tendon healing via JNK and STAT3 signaling. FASEB J. doi: 10.1096/fj.201700071R ; http://www.fasebj.org/content/early/2017/05/21/fj.201700071R.abstract


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.