News Release

Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes

Peer-Reviewed Publication

World Scientific

Applying Electric Field in the Ammonium Based Solution

image: Applying electric field in the ammonium based solution has been used for the fabrication of different forms of copper hydroxide nanostructures. The supercapacitance performance of synthesized nanostructures has been investigated and high specific capacitance of 178 F/g at scan rate of 20 mVs-1 was obtained. The fast, simple and low cost electric field enhanced synthesis method proposed here can be used for fabrication of high performance Cu(OH)2 nanostructured supercapacitance electrodes. view more 

Credit: NANO

Copper based nano structures have gained much attention in today's modern devices. A team of Nano-fabricated Energy Devices lab in University of Tehran have used an ultra-fast and simple method for fabrication of different types of these structures. By applying electric field in the ammonium hydroxide based solutions dense arrays of copper based nanostructures in short duration of time in the order of below 1 min (or even in the order of just 1 second) have been achieved.

In addition, electrochemical properties of the fabricated nanostructures have been investigated, showing specific and areal capacitances larger than other reports on copper hydroxide electrodes. We believe that these structures have great potential for energy devices, such as supercapacitors and lithium ion batteries.

This research was funded in part by Iran National Science Foundation (INSF).

Authurs of this paper are Sajad Sepahvand from University of Tehran, Nano-fabricated Energy Devices Lab, Dr. Shahnaz Ghasemi from Sharif University of Technology, Institute of Water and Energy, and Dr. Zeinab Sanaee from University of Tehran, Nanofabricated Energy Devices Lab. Corresponding authur for this study is Dr. Zeinab Sanaee, z.sanaee@ut.ac.ir.

The paper can be found in NANO journal.

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.