News Release

Graphene photodetectors: Thinking outside the 2-D box

Peer-Reviewed Publication

ICFO-The Institute of Photonic Sciences

Artistic View of the Photo-Thermionic Effect in a Graphene-Wse2-Graphene Heterostructure. ©Icfo| Fab

image: Artistic view of the photo-thermionic effect in a graphene-WSe2-graphene heterostructure. view more 

Credit: ©ICFO| Fabien Vialla

In a recent work published in Nature Communications, the research group led by ICREA Professor at ICFO Frank Koppens demonstrate a novel way to detect low-energy photons using vertical heterostructures made by stacking graphene and other 2D semiconducting materials. By studying the photoresponse of these atomically thin sandwiches, the researchers have shown that it is possible to generate a current by heating electrons in graphene with infrared light and extracting the hottest electrons over a vertical energy barrier.

This ingenious mechanism, named photo-thermionic effect, takes advantage of the unique optical properties of graphene such as its broadband absorption, ultrafast response and gate-tunability. Moreover, owing to their vertical geometry, devices relying on this effect make use of the entire surface of graphene and can be potentially scaled up and integrated with flexible or rigid platforms.

More generally, this study reveals once again the amazing properties of these man-made heterostructures. According to Prof. Frank Koppens "this is just the tip of the iceberg, these 2D sandwiches still have a lot to reveal". ICFO researcher Mathieu Massicotte, first author of this study, emphasizes the new possibilities opened up by these new materials: "Everyone knows it is possible to detect light with graphene using in-plane geometries, but what about the out-of-plane direction? To answer, you need to think outside the 2D box!"

The results obtained from this study have shown that heterostructures made of 2D materials and graphene can be used to detect low-energy photons which could lead to new, fast and efficient optoelectronic applications, such as high-speed integrated communication systems and infrared energy harvesting. In addition, it demonstrates the compatibility of 2D materials with the digital chips currently utilized in cameras, paving the way for low cost infrared spectrometers and imaging systems.

###

Reference:

M. Massicotte, P. Schmidt,F. Vialla, K. Watanabe, T. Taniguchi, K. J. Tielrooij & F. H. L. Koppens, Photo-thermionic effect in vertical graphene heterostructures, Nature Communications 7, Article number: 12174 doi:10.1038/ncomms12174

Links:

About ICFO

ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia as a centre of research excellence devoted to the science and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists, and provide knowledge and technology transfer. Today, it is one of the top research centres worldwide in its category as measured by international rankings.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The institute hosts 300 professionals based in a dedicated building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

ICFO participates in a large number of projects and international networks of excellence and is host to the NEST program which is financed by Fundación Privada Cellex Barcelona. Ground-breaking research in graphene is being carried out at ICFO and through key collaborative research partnerships such as the FET Graphene Flagship. ICREA Professor at ICFO and NEST Fellow Frank Koppens is the leader of the Optoelectonics work package within the Flagship program.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.