News Release

New cytoplasmic role for proteins linked to neurological diseases, cancers

Peer-Reviewed Publication

UT Southwestern Medical Center

Michael Buszczak,  Arnaldo Carreira-Rosario and Varsha Bhargava

image: Dr. Michael Buszczak and graduate students Arnaldo Carreira-Rosario and Varsha Bhargava (l-r) contributed to a study that identified a new role for a protein linked to a variety of neurological disorders and cancers. view more 

Credit: UT Southwestern Medical Center

DALLAS - March 17, 2016 - Researchers at UT Southwestern Medical Center have identified a second role for a class of RNA-binding proteins, revealing new insights about neurological diseases and conditions associated with this protein such as autism, epilepsy, and certain types of cancer.

"These data should promote a re-evaluation of those diseases to see if this new function that we've identified contributes to those defects," said senior study author Dr. Michael Buszczak, Associate Professor of Molecular Biology and with the Hamon Center for Regenerative Science and Medicine at UT Southwestern.

The study, published recently in Developmental Cell, indicates that RNA-binding fox (Rbfox) proteins oversee translation of messenger RNA, or mRNA, into proteins. Using the fruit fly Drosophila as a model, researchers showed that the Rbfox1 protein, in particular, has this regulatory role.

Rbfox1 proteins were known to play a key role in splicing together coding portions of genes called exons to form mRNA, which is subsequently translated to form proteins. Splicing largely takes place within the nucleus of cells, where many Rbfox1 proteins are found. But there are also variants of Rbfox1 proteins found in the cytoplasm - the portion of the cell outside the nucleus - and the function of those cytoplasmic proteins had not been understood.

"We found that cytoplasmic Rbfox1 represses the production of specific proteins," Dr. Buszczak said.

The lead author of the study, UT Southwestern Molecular Biology graduate student Arnaldo Carreira-Rosario, found that Rbfox1 binds to specific elements at the ends of mRNA molecules, preventing these mRNAs from being translated into proteins. If Rbfox1 proteins are lost and mRNA is no longer repressed, that could lead to aberrant growth of cells, or cancers.

The researchers found that cytoplasmic forms of Rbfox1 were required for germ cell development in Drosophila. "Without this protein, the germ cells are blocked in a very specific stage of differentiation and just linger there. They can't differentiate into mature eggs," said Dr. Buszczak, an E.E. and Greer Garson Fogelson Scholar in Medical Research.

This block leads to sterility in female Drosophila and, in other contexts, can result in an inappropriate proliferation of cells, which underlies cancer.

Work by co-author Dr. Mani Ramaswami of Trinity College Dublin in Ireland points to a link between the newly identified function of Rbfox1 proteins and neuronal development and function, which could have important implications for a number of the neuronal disorders linked to disruption of Rbfox1.

"The idea is that loss of Rbfox1 causes disease by disrupting protein expression, not RNA splicing," Dr. Buszczak said. "If this interpretation is correct, then it has implications for how one would develop therapeutics to treat the disease in question."

###

Other UT Southwestern researchers who contributed to this study were Varsha Bhargava, a graduate student in Molecular Biology; and Rahul Kollipara, a computational biologist with the Eugene McDermott Center for Human Growth and Development.

Grant support for this work came from the National Institutes of Health.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. The faculty of almost 2,800 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in about 80 specialties to more than 100,000 hospitalized patients and oversee approximately 2.2 million outpatient visits a year.

This news release is available on our home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at http://www.utsouthwestern.edu/receivenews


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.