News Release

Twin study: Genetics and environment affect different regions of the brain

Peer-Reviewed Publication

Society of Nuclear Medicine and Molecular Imaging

Reston, Va. (March 1, 2016) - A recent study, reported in the March issue of The Journal of Nuclear Medicine, found evidence that genetic influence on cerebral glucose metabolism played a major role in the bilateral parietal lobes and the left temporal lobe of the human brain, while environmental influences after birth dominated in other regions.

Twins have long been the subject of studies in the quest to determine the influences of nature vs. nurture. An earlier study, published in the journal "Nature Genetics" in May 2015, examined more than half a century of research collected on 14.5 million pairs of twins and concluded that the nature versus nurture debate is a draw; both have nearly identical influences on a person's traits and diseases. But we still didn't know specifically how nature and environment can affect our brains.

Now, researchers at Osaka University Graduate School of Medicine in Japan have begun to focus in on just that. In their study of 40 monozygotic (identical) and 18 dizygotic (fraternal) twin pairs, ages 30 or older, they used positron emission tomography (PET) scans with the radiopharmaceutical 2-deoxy-2-F-18-fluoro-D-glucose (FDG) targeting regional cerebral glucose metabolism. Eighteen control pairs matched genetically unrelated individuals of the same age and gender as the twins in the study.

Jun Hatazawa, MD, PhD, corresponding author of the study, explains, "Glucose is an essential fuel for brain energy metabolism as well as oxygen. Functional activation of neurons is normally associated with increases in the local cerebral glucose utilization and blood flow."

They evaluated the F-18 FDG uptake in each cerebral lobe for the identical and fraternal twins as well as the controls. By comparing differences, they could estimate the genetic and environmental contributions.

Hatazawa notes that previous studies have revealed strong genetic influence on the volume of frontal gray matter, whereas this study shows that frontal glucose metabolism is preferentially influenced by environmental factors. Knowing which areas of the brain are more influenced by the environment will help with understanding particular neurological and psychiatric disorders.

He states, "The frontal lobes of monozygotic twins are anatomically identical, but they are metabolically and functionally different under environmental influences. This twin-imaging research can be applied to amyloid imaging in Alzheimer's disease and neurotransmitter-receptor imaging in psychiatric disorders where genetic, epigenetic and environmental influences remain unknown. In future twin studies, we may be able to identify specific environmental risk factors."

###

Authors of the article "Genetic and Environmental Influences on Regional Brain Uptake of 2-deoxy-2-18F-fluoro-D-glucose: a PET Study in Monozygotic and Dizygotic Twins" include Shinichiro Watanabe, Hiroki Kato, Eku Shimosegawa, and Jun Hatazawa of Osaka University Graduate School of Medicine.

Please visit the SNMMI Media Center to view the PDF of the study, including images, and more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Laurie Callahan at (703) 652-6773 or lcallahan@snmmi.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.