News Release

Study finds fish larvae are better off in groups

UM Rosenstiel School researchers find fish larvae swim faster, straighter in groups

Peer-Reviewed Publication

University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science

Chromis Atripectoralis Video

video: This the first document of any fish larvae swimming in the pelagic environment, and it is also the first observation of group behavior in fish larvae in the natural world. You will notice that the group of C. atripectoralis larvae is staying cohesive, spreading along the horizontal in a formation resembling a flock of birds. Changes of direction are initiated by one or a individuals, almost immediately followed by the others. The leading individuals do not seem to be the same across the 10 mins of observation. view more 

Credit: Claire Paris, author of the study and Ricardo Paris. The following technique was pioneered by Jeff Leis, also author of the study.

MIAMI - A recent study provides new evidence that larvae swim faster, straighter and more consistently in a common direction when together in a group. The research led by scientists at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science is the first to observe group orientation behaviors of larval fish.

The research team compared the movements of both individuals and groups of 10-12 in a species of damselfish, Chromis atripectoralis, in their natural environment off Lizard Island on the Great Barrier Reef. Larvae were observed by divers and by using a drifting image recording device, called the DISC (Drifting In Situ Chamber), developed by Paris.

The results revealed that groups swam on a 15 percent straighter course and seven percent faster than individuals. "In addition, our observations suggest that group orientation emerges from simple group dynamics rather than from the presence of more skillful leaders," said UM Rosenstiel School Associate Professor Claire Paris. This implies that the results could apply to a wide range of organisms, or even automated navigation systems, without requiring strong cognitive skills.

Schooling behavior in adult fish is thought to be beneficial to reduce predation and to better detect food. This is the first study to report group orientation behaviors during a fish's larval stage, prior to settlement on to a reef.

Paris' research team plans to conduct future studies to better understand the mechanisms involved in group orientation and determine if fish larvae stay in groups as soon as they hatch.

The study, titled "With a Little Help from my Friends: Group Orientation by Coral Reef Fish Larvae," was published in the Dec. 1, 2015 issue of the journal PLOS ONE. The study's authors include: Irisson and Paris of the UM Rosenstiel School; Jeffrey Leis and Michelle Yerman of the Australian Museum Research Institute. The study was funded by a OTIC grant from the National Science Foundation.

###

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.