News Release

Cornell astrophysicists play vital role to validate detection of gravitational waves

Peer-Reviewed Publication

Cornell University

Collision of Two Black Holes -- SXS Project

video: This computer simulation shows the collision of two black holes, a tremendously powerful event detected for the first time ever by the Laser Interferometer Gravitational-Wave Observatory, which detected gravitational waves as the black holes spiraled toward each other, collided and merged. This simulation shows what the merger event would look if humanity could somehow travel for a closer look. It was created by the Cornell-founded SXS (Simulating eXtreme Spacetimes) project. view more 

Credit: Simulating eXtreme Spacetimes Project

Cornell physics and astrophysics professor Saul Teukolsky has been using supercomputers to solve Einstein's equations for black hole mergers for much of his career. Teukolsky and the Cornell-founded Simulation of eXtreme Spacetimes (SXS) collaboration group have been calculating and completing a full catalog of theoretical solutions since 2000, when supercomputers first became capable of the task.

The LIGO (Laser Interferometer Gravitational-Wave Observatory) and Virgo group confirmed that the waves came from a black hole merger by comparing their data with a theoretical model developed at Cornell.

Teukolsky says:

"The LIGO announcement describes one of the greatest scientific discoveries of the past 50 years. Gravitational waves have been a theoretical prediction of Einstein's general theory of relativity for the past 100 years.

"Our group has been solving Einstein's equations on supercomputers to predict the precise form of the signal that should be seen. Our theoretical predictions lie right on top of the experimentalist's measurements - an exciting confirmation of general relativity.

"Finally these waves have been detected on Earth with an unbelievably sensitive experiment. And, surprisingly, the source of the waves is a system of two black holes in orbit around each other, that spiral inward and smash together."

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.