News Release

Link between obesity and increased risk of colorectal cancer revealed

Peer-Reviewed Publication

Thomas Jefferson University

(PHILADELPHIA) -- Obesity has long been associated with increased risk of colorectal cancer, but the link has never been understood. Now, a research team led by investigators at Thomas Jefferson University has revealed the biological connection, and in the process, has identified an approved drug that might prevent development of the cancer. Their study is published in Cancer Research.

In mice, investigators found that a high caloric diet turned off expression of a key hormone in the intestine, which led to deactivation of a tumor suppressor pathway. Genetic replacement of that hormone turned the tumor suppressor back on and prevented cancer development -- even when mice continued to eat excess calories.

These findings position the use of the pill linaclotide (Linzess), which is structurally related to the lost hormone, as a therapeutic approach to preventing colorectal cancer in obese patients, says the study's senior author, Scott Waldman, M.D. Ph.D., Chair of Pharmacology & Experimental Therapeutics at Sidney Kimmel Medical College of Thomas Jefferson University.

The U.S. Food and Drug Administration approved linaclotide in 2012 to treat irritable bowel syndrome with constipation as well as chronic idiopathic constipation (chronic constipation from unknown causes).

"Our study suggests that colorectal cancer can be prevented in obese individuals with use of hormone replacement therapy -- much as other diseases associated with hormone deficiency, such as loss of insulin in diabetes, can be treated," Dr. Waldman says.

"These findings came as a surprise -- we and many other researchers worldwide have been trying to disentangle obesity from development of colorectal cancer," he says. "Calories sit in the middle of these two conditions, but the question of what they were doing has been one of the most perplexing and provocative questions in cancer research.

"Now we finally have a big clue as to the origin of colorectal cancer in obese individuals and perhaps in other people as well," says Dr. Waldman, who is also the Samuel MV Hamilton Professor.

The risk of developing colorectal cancer in obese persons is about 50 percent greater, compared to risk in lean people. Scientists had thought the issue was one based on the amount of fat tissue and the associated unknown metabolic processes -- excess calories that fuel cell energy and growth -- but that did not turn out to be the case here, Dr. Waldman says.

Dr. Waldman is already involved in a multisite clinical study testing dose and side effects of linaclotide use in healthy volunteers. Investigators from the National Cancer Institute, Mayo Clinic, and Fox Chase Cancer Center are participating.

In the present study, the research team -- which includes investigators from Harvard and Duke Medical Schools -- used genetically engineered mice on different diets to conduct their investigation.

They found that obesity (either from excess fat or carbohydrate consumption, or both) is associated with loss of the hormone guanylin, which is produced in the intestine's epithelium -- the cells lining the organ. The hormone turns on its receptor, guanylyl cyclase C (GUCY2C), which regulates processes underlying regeneration of the intestinal epithelium. "The lining of the intestines is very dynamic and continuously being replaced, and GUCY2C contributes to the choreography of the key processes needed for this regeneration," Dr. Waldman says.

Deactivation of the guanylin gene is common in colorectal cancers in both humans and animals, he says. In that regard, morbidly obese patients exhibit an 80 percent decrease in guanylin gene expression compared to lean people, he says.

But in this study, the researchers discovered the consequences of that loss. They found that the guanylin hormone receptor acts as a growth-controlling tumor suppressor, and without the hormone, the receptor is silenced. "This happens extremely early in development of the cancer," Dr. Waldman says. "When the receptor is silenced, the epithelium becomes dysfunctional, setting up the conditions for cancer development."

The scientists checked their findings by creating mice that carried a transgene that won't allow the guanylin gene to be shut off. "Even in the setting of excess calories, from any diet source, tumors don't develop," he says.

Their experiments demonstrated that obese mice, compared to lean mice, were much more likely to silence the hormone and its receptor. "We believe that if colorectal cancer is going to develop, it will be through this silencing mechanism -- and that it will happen much more frequently in the obese," Dr. Waldman says. Even so, investigators don't yet know the precise molecular mechanism that turns off hormone production.

"The beauty of our findings is that while we know the hormone is lost in the obese mice, its receptors are just sitting there waiting to be switched on. And this study demonstrates that if you can prevent hormone loss, you can also prevent tumor development. These findings suggest that a drug like linaclotide, which acts like guanylin, can activate GUCY2C tumor-suppressing receptors to prevent cancer in obese patients," he says.

The researchers also showed that the effect of excess calorie consumption can be reversed via calorie restriction, even in obese mice. "The challenges of lifestyle modification notwithstanding, our observations suggest that calorie restriction can reconstitute guanylin expression," Dr. Waldman says. "This may be an effective strategy to prevent colon cancer in the obese."

###

The study was supported by grants from the National Institutes of Health (CA75123, CA95026, CA146033, CA56036, CA170533, DK088199), the Harvard Digestive Diseases Center (DK034854), the Pennsylvania Department of Health (SAP #4100059197, SAP #4100051723), and Targeted Diagnostic and Therapeutics, Inc.

Conflict of Interest: Dr. Waldman is the Chair of the Data Safety Monitoring Board for the Chart-1 Trial? sponsored by Cardio3 Biosciences, and the Chair (uncompensated) of the Scientific Advisory Board of Targeted Diagnostics & Therapeutics, Inc. which provided research funding that, in part, supported this work and has a license to commercialize inventions related to this work.

Article Reference: It's Volume 76, Issue 2, pages 339-46.

For more information, contact Colleen Cordaro, 215-955-2238, Colleen.cordaro@jefferson.edu

About Jefferson

Our newly formed organization, Jefferson, encompasses Thomas Jefferson University and Jefferson Health, representing our academic and clinical entities. Together, the people of Jefferson, 19,000 strong, provide the highest-quality, compassionate clinical care for patients, educate the health professionals of tomorrow, and discover new treatments and therapies that will define the future of health care.

Jefferson Health comprises five hospitals, 16 outpatient and urgent care locations, as well as physician practices and everywhere we deliver care throughout the city and suburbs across Philadelphia, Montgomery and Bucks Counties in Pa., and Camden County in New Jersey. Together, these facilities serve nearly 73,000 inpatients, 239,000 emergency patients and 1.7 million outpatient visits annually. Thomas Jefferson University Hospital is the largest freestanding academic medical center in Philadelphia. Abington Hospital is the largest community teaching hospital in Montgomery or Bucks counties. Other hospitals include Jefferson Hospital for Neuroscience in Center City Philadelphia; Methodist Hospital in South Philadelphia; and Abington-Lansdale Hospital in Hatfield Township.

Thomas Jefferson University enrolls more than 3,800 future physicians, scientists, nurses and healthcare professionals in the Sidney Kimmel Medical College (SKMC), Jefferson Colleges of Biomedical Sciences, Health Professions, Nursing, Pharmacy, Population Health and is home of the National Cancer Institute (NCI)-designated Sidney Kimmel Cancer Center.

For more information and a complete listing of Jefferson services and locations, visit http://www.jefferson.edu.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.