News Release

Mental math helps monk parakeets find their place in pecking order

Peer-Reviewed Publication

PLOS

Mental Math Helps Monk Parakeets Find their Place in Pecking Order

image: A study of aggression in monk parakeets suggests that where they stand in the pecking order is a function of the bird's carefully calibrated perceptions of the rank of their fellow-feathered friends. view more 

Credit: Katja Schulz/Flickr

A study of aggression in monk parakeets suggests that where they stand in the pecking order is a function of the bird's carefully calibrated perceptions of the rank of their fellow-feathered friends.

Newly formed groups of monk parakeets do not show evidence that they perceive rank, yet an awareness of it emerges quickly, after about a week of interactions, which is when individuals direct aggression more frequently against those nearby in rank rather than with lower-ranked birds.

But how do the birds infer rank - their own and the rank of those in the rest of the flock - and then act upon it?

"Parakeets appear to be able to connect the dots in their groups, remembering chains of aggression, so if A fights B, then watches how B fights C and how C fights D and how D fights E, then A will use this knowledge to adjust how it interacts with E based on all of the fights in between," said the study's lead author Elizabeth Hobson, a postdoctoral fellow at the National Institute for Mathematical and Biological Synthesis.

The study published today in the PLOS Computational Biology sheds new light on how socially complex animal societies evolve and how dominance hierarchies are established.

A socially and cognitively complex species, monk parakeets inhabit a social structure organized by dominance hierarchies, such that each animal is ranked as dominant over animals below it and submissive to those above it in the hierarchy. Aggressive encounters usually drive rankings, and a higher rank, of course, often means better foraging and greater chances of reproductive success.

Unlike other animals that might use visual cues, such as size, or perceptional clues, such as spatial location, to determine rank, the monk parakeet appears to rely on other clues - ones that are based on newly acquired social knowledge, the study found.

In the study, Hobson and co-author Simon DeDeo of Indiana University and the Santa Fe Institute analyzed detailed observations of aggression in two independent groups of captive monk parakeets. Each group was observed over the course of 24 days.

"We looked for cases where we could clearly determine a winner when aggression took place - often these were cases where a bird approached another and knocked it off its perch. It's pretty easy to determine the winner in these kinds of events," Hobson said.

A total of 1013 wins in one group and 1360 wins in the second group were analyzed.

Mathematically sophisticated computation with this rich dataset then revealed that as individuals begin to interact and watch the fights of others, they accumulate knowledge of who wins in fights against whom. Once this knowledge is present, the birds use it refine their own behavior, for example, by avoiding fights with birds higher-ranked than themselves, but also birds that were much lower-ranked. Instead, they focused their aggression by choosing individuals with whom they might be closely matched. In effect, the aggression becomes more strategically directed.

Thus, the ability to determine rank amongst these socially precocious birds appears to be an act of cognitive complexity, learned through the bird's careful observation of how the other birds interact.

"Our approach provides insight not only into how these parakeets are behaving in their groups, but also into the cognitive skills they would need to exhibit these kinds of strategic behaviors. This allows us to start to understand the interaction between social and cognitive complexity and to begin to compare what we see in the parakeet groups to other socially complex species like primates," Hobson added.

###

Image Caption: Monk Parakeet
Image Credit: Katja Schulz/Flickr
Image Link: https://www.plos.org/wp-content/uploads/2015/09/Parakeet.jpg

All works published in PLOS Computational Biology are Open Access, which means that all content is immediately and freely available. Use this URL in your coverage to provide readers access to the paper upon publication: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004411

Contact: Elizabeth Hobson
Address: National Institute for Mathematical and Biological Synthesis
National Institute for Mathematical and Biological Synthesis
1122 Volunteer Blvd, Suite 106
Knoxville, TN 37996
UNITED STATES
Phone: 865-974-4974
Email: ehobson@nimbios.org

Citation: Hobson EA, DeDeo S (2015) Social Feedback and the Emergence of Rank in Animal Society. PLoS Comput Biol 11(9): e1004411.doi:10.1371/journal.pcbi.1004411

Funding: EAH was supported by the New Mexico Higher Education Graduate Fellowship, Loustaunau Fellowship, and National Science Foundation (NSF) GK-12 DISSECT (#DGE-0947465) Fellowship, research grants from the Associated Students of New Mexico State University, American Ornithologists' Union, Sigma Xi, and the NMSU Biology Graduate Student Organization, with further support from NSF Grant #IOS-0725032 and associated REU supplement to Timothy Wright. Part of this work was conducted while EAH was a Postdoctoral Fellow at the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the NSF, the U. S. Department of Homeland Security, and the U.S. Department of Agriculture through NSF Award #DBI-1300426, with additional support from the University of Tennessee, Knoxville. SD and EAH were supported in part by NSF Grant #EF-1137929, and by the Santa Fe Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

About PLOS Computational Biology

PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales through the application of computational methods. All works published in PLOS Computational Biology are Open Access. All content is immediately available and subject only to the condition that the original authorship and source are properly attributed. Copyright is retained. For more information follow @PLOSCompBiol on Twitter or contact ploscompbiol@plos.org.

About PLOS

PLOS is a nonprofit publisher and advocacy organization founded to accelerate progress in science and medicine by leading a transformation in research communication. For more information, visit http://www.plos.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.