News Release

Protein identified that favors neuroprotective glial cell formation from stem cells

Peer-Reviewed Publication

Mary Ann Liebert, Inc./Genetic Engineering News

<em>Stem Cells and Development</em>

image: Stem Cells and Development is an authoritative peer-reviewed journal published 24 times per year in print and online. The Journal is dedicated to communication and objective analysis of developments in the biology, characteristics, and therapeutic utility of stem cells, especially those of the hematopoietic system. A complete table of contents and free sample issue may be viewed on the Stem Cells and Development website. view more 

Credit: ©Mary Ann Liebert, Inc., publishers

New Rochelle, NY, August 6, 2015--An international team of researchers has shown that NFIX, a protein that regulates neuronal stem cell activity (NSC), also has a role in driving NSC differentiation toward oligodendrocytes, a type of glial cell. These cells produce the myelin that surrounds and protects neurons. Evidence supporting this mechanism in mice and its potential in the development of NSC-based therapy for brain injury, demyelinating diseases, and brain tumors are discussed in a study published in Stem Cells and Development, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Stem Cells and Development website until September 6, 2015.

Bo Zhou, Richard Gronostajski, and coauthors from State University of New York at Buffalo, University of Heidelberg, Germany, MRC, London, U.K., and University of Queensland, Brisbane, Australia, demonstrate that when the transcription factor Nuclear Factor I X (NFIX) is present, NSCs are less likely to differentiate into oligodendrocytes. As NFIX levels decreased in mice after birth, however, differentiation of the NSCs to a glial fate was favored. The researchers report their findings in the article "Loss of NFIX Transcription Factor Biases Postnatal Neural Stem/Progenitor Cells Tostwards Oligodendrogenesis."

"The authors demonstrate that NFIX is an important regulator of oligodendrogenic lineage specification using both in vitro as well as in vivo models," says Editor-in-Chief Graham C. Parker, PhD, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI. "They have provided not only vital information concerning neural stem cell differentiation but also a target for manipulating neural development.

###

About the Journal

Stem Cells and Development is an authoritative peer-reviewed journal published 24 times per year in print and online. The Journal is dedicated to communication and objective analysis of developments in the biology, characteristics, and therapeutic utility of stem cells, especially those of the hematopoietic system. A complete table of contents and free sample issue may be viewed on the Stem Cells and Development website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Cellular Reprogramming, Tissue Engineering, and Human Gene Therapy. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News) (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.