News Release

Protein machines make fluctuating flows unconsciously

Peer-Reviewed Publication

Hiroshima University

Mikhailov and Kapral

image: On the left is Prof. Alexander S. Mikhailov, and on the right is Prof. Raymond Kapral. view more 

Credit: Fritz Haber Institute of the Max Planck Society and University of Toronto

An international research group has demonstrated that protein machines, regardless of their specific functions, can collectively induce fluctuating hydrodynamic flows and substantially enhance the diffusive motions of particles in the cell.

Biological cells contain large numbers of active proteins that repeatedly change their conformations. These protein machines have a variety of specific functions, acting as motors, ion pumps, or enzymes, and they need a supply of ATP or other substrates to maintain their cyclic operation.

Professor Alexander S. Mikhailov (Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, and Research Center for the Mathematics on Chromatin Live Dynamics [RcMcD] at Hiroshima University) and Professor Raymond Kapral (Department of Chemistry, University of Toronto and Institute for Theoretical Physics, Technical University of Berlin) have suggested that these proteins generate nonthermal hydrodynamic flows, which enhance the diffusive motions of particles. Furthermore, they have theoretically demonstrated a chemotaxis-like drift in the presence of gradients in concentrations of active proteins or substrate (ATP). Such universal nonequilibrium effects hold true for all passive particles and for the protein machines themselves.

As the fluctuating flow fields arise from nonequilibrium effects, work or energy can be extracted from the fields. In other words, these active proteins can supply power to the system in a distributed way, besides performing their specific functions. This may change our views of active processes in the cell.

###

For details, refer to "Hydrodynamic collective effects of active protein machines in solution and lipid bilayers," in Proc. Natl. Acad. Sci. USA 112 (28), E3639-3644 (2015); DOI: 10.1073/pnas.1506825112.

About the RcMcD:

The RcMcD, one of the Centers of Excellence at Hiroshima University, was launched in 2013 with funding from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The RcMcD aims to explore chromatin structure and dynamics and their relationship to biological regulation mechanisms, including transcription, replication, and recombination, by adopting interdisciplinary approaches. The members of the RcMcD come from various fields, including biology, physics, mathematics, chemistry, and micro engineering.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.