News Release

Researchers bring to life proteins' motion

OHSU study fills decades-long gap in knowledge

Peer-Reviewed Publication

Oregon Health & Science University

Protein Motion

video: The motions of a protein are intimately tied to its function(s). Pictured here is the protein arginine kinase, which is similar to the human protein creatine kinase. It's involved in storing and retrieving energy from a 'bank' in cells when the need arises. For example, if you see a lion and you need your heart to beat faster so that you can run, this protein helps obtain the needed extra energy. When the protein opens (figure 1), it binds to specific molecules in a cell. That then causes the protein to close (figure 2), which begins a chemical reaction between the bound molecules. After the reaction is complete, the protein then opens again, and the new molecules leave the protein. You can view the proteins’ motions in the simulation. view more 

Credit: Omar Davulcu, Ph.D., OHSU

PORTLAND, Ore. -- Advancing the field of structural biology that underpins how things work in a cell, researchers have identified how proteins change their shape when performing specific functions. The study's fresh insights, published online in the journal Structure, provide a more complete picture of how proteins move, laying a foundation of understanding that will help determine the molecular causes of human disease and the development of more potent drug treatments.

Though it has long been recognized that proteins are not static, for more than 30 years, scientists' understanding of proteins was limited to observing their structure through static snapshots taken using crystallography, a technique used to capture images of molecules' structures in various configurations.

In order to understand proteins' normal functioning, and design treatments for when cells malfunction, scientists needed, but lacked, a dynamic picture of proteins' coordinated motions. The one experimental technique through which scientists could observe motion, nuclear magnetic resonance (NMR) spectroscopy, has been used with fewer than 1 percent of proteins because the majority of proteins are too large, complex, difficult to obtain or not soluble.

To fill the gap in knowledge, the researchers designed a computer method that looked at two different snapshots of the same protein structures, captured through crystallography, and identified hinge points, or 'hot spots,' of flexibility. In doing so, the researchers successfully affirmed the premise that proteins use the ranges of motion that are most efficient. Through improved understanding of the mechanics of motion, researchers will be better able to analyze the changes in proteins as they interact with other molecules, regulating how cells function.

'For more than 30 years, the biology textbooks of medical students have contained static pictures of the structures of more than 100,000 proteins. This study is a step toward bringing those snapshots to life by understanding the motions that are involved in how proteins catalyze reactions or regulate biological processes,' said Michael Chapman, Ph.D., professor of biochemistry and molecular biology, OHSU School of Medicine, and member of the Knight Cancer Institute. 'By way of analogy, a snapshot of a thoroughbred horse doesn't tell you much about how it's running. This paper is a step toward learning how proteins are moving to go about their business.'

###

Researchers who contributed to the study, 'Parsimony in Protein Conformational Change,' include Chapman; Brynmor K. Chapman, previously with OHSU, currently with Computer Science Department at Stanford University; Omar Davulcu, OHSU; Jack J. Skalicky, Department of Biochemistry, University of Utah; and Rafael P. Brueschweiler, Department of Chemistry & Biochemistry, Ohio State University. About OHSU

Oregon Health & Science University is a nationally prominent research university and Oregon's only public academic health center. It serves patients throughout the region with a Level 1 trauma center and nationally recognized Doernbecher Children's Hospital. OHSU operates dental, medical, nursing and pharmacy schools that rank high both in research funding and in meeting the university's social mission. OHSU's Knight Cancer Institute helped pioneer personalized medicine through a discovery that identified how to shut down cells that enable cancer to grow without harming healthy ones. OHSU Brain Institute scientists are nationally recognized for discoveries that have led to a better understanding of Alzheimer's disease and new treatments for Parkinson's disease, multiple sclerosis and stroke. OHSU's Casey Eye Institute is a global leader in ophthalmic imaging, and in clinical trials related to eye disease.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.