News Release

Toward a more realistic picture of how molecules move within cells

Peer-Reviewed Publication

American Chemical Society

Toward a More Realistic Picture of How Molecules Move within Cells

image: Using liquid phase TEM, Alivisatos et al. were able to track gold nanorods in real time. view more 

Credit: American Chemical Society

A candid photo can reveal much more about the mood of a party than a stiff, posed picture. The same might be true for molecules, according to researchers. In a report appearing in the journal ACS Central Science, they report use of a newly developed method that can take a candid snapshot of how molecules really move in vitro and in cells. This information could help resolve some controversial claims about how nanocrystals assemble.

Paul Alivisatos and colleagues note that microscopy is often limited by how samples are prepared. Currently, the most powerful microscopes require samples to be dried under a vacuum. That freezes molecules in one place, wherever they were when they were dried. But many materials behave very differently when they're in liquid, like when those molecules are in a living cell. Some molecules can move freely, whereas others have more limited mobility. Optical microscopy is a good way to investigate such things at the microscale level, but until recently, it hasn't been ideal for smaller objects like nanoparticles.

The researchers used the newly developed technique of liquid-phase transmission electron microscopy to visualize and track gold nanorods--which could be used in cancer therapy-- in real time. The nanorods assembled differently, depending on whether they were in liquid or dried. Rather than focus on the details in a given assembly, the team parsed large amounts of data to monitor the positions of each nanoparticle. That gave them a quantitative understanding of previously hidden factors involved in nanocrystal assembly. They say that such data could help researchers more fully understand how nanoparticles assemble, a process shrouded in controversy, and how molecules move within living cells.

###

This research paper appears in the inaugural issue of ACS Central Science, a fully open access journal.

The authors acknowledge funding from the Defense Threat Reduction Agency, the King Abdulaziz City for Science and Technology and the Miller Institute for Basic Research in Science at University of California, Berkeley.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.