News Release

Scientists find cancer weak spots for new targeted drugs

Peer-Reviewed Publication

University of Sussex

Frances Pearl, University of Sussex

image: This is Dr. Frances Pearl, Bioinformatics Academic Research Manager at the University of Sussex. view more 

Credit: University of Sussex

Scientists have identified weak spots in cancer cells that could be targeted and attacked by new precision drugs.

A major computational analysis by scientists at the University of Sussex and The Institute of Cancer Research, London, has found a number of potential targets for drugs that exploit the inherent weaknesses of cancer cells.

The findings could lead to personalised medicine that 'reads' a cancer patient's DNA and only attacks defective cells - in contrast to the scattergun approach of conventional chemotherapy, which attacks all dividing cells, including healthy ones.

The study is published today (Tuesday 24 February 2015) in the journal Nature Reviews Cancer.

Scientists from the University of Sussex and The Institute of Cancer Research (ICR) analysed the patterns of mutations found in the DNA sequences of tumours from more than 5,000 cancer patients.

The team, jointly led by Dr Frances Pearl (Sussex) and Dr Bissan Al-Lazikani (ICR), focused on the 'DNA repair' systems that protect the genetic information of the cell, and are mutated in almost all cancers. Breaking these systems for DNA repair allows cancer cells to divide uncontrollably and generate even more mutations - helping them become resistant to chemotherapy and radiation treatments.

"Knowing which DNA repair processes are defective in an individual tumour allows us to target new drugs that are only toxic to cells with a particular pattern of mutations - ie cancer cells," said Dr Pearl, who heads the Bioinformatics Research Group at Sussex.

One class of drug called PARP inhibitors already target DNA repair systems. They are being used in clinical trials to treat women with breast or ovarian cancers that have mutations in BRCA genes, and one of the class, olaparib, has recently been licensed for women with ovarian cancer in Europe and the US.

But the development of new targeted drugs like these relies on identifying good targets. It is only because of huge advances in technology that such a large-scale analysis is now possible.

By using cutting edge computing techniques, the team have been able to examine much larger data sets than ever before. Dr Pearl said: "This analysis shows that there are many other cancers where new targeted drugs could selectively kill tumours with DNA repair defects.

"This potentially means thousands more cancer patients could be saved from the horrible side-effects of chemotherapy by receiving precision medicine, which doesn't kill the body's healthy cells."

Study co-leader Dr Bissan Al-Lazikani, Team Leader in Cancer Therapeutics at The Institute of Cancer Research, London, said:

"Only a small fraction of the proteins involved in cancer are targeted by current drugs, and we urgently need drugs that hit new targets. DNA repair proteins hold particular promise as new drug targets, and there are already some drugs coming through that exploit cancer's inherent weaknesses in DNA repair.

"Using 'big data' analysis, our study has identified untargeted DNA repair proteins that look especially promising as the targets for new anti-cancer drugs. Such drugs would not only prove useful in their own right, but also potentially in combination with radiotherapy or other drugs to overcome treatment resistance. We hope this study will help speed up the development of new personalised cancer treatments."

The University of Sussex is home to the world-leading Genome Damage and Stability Centre, one of the largest concentrations of scientists studying DNA repair in the world. Centre Director Professor Tony Carr said: "Understanding the responses of cells to genome damage is critical in our fight to beat cancer and other life-threatening diseases.

"The University of Sussex is playing a vital role in this war against cancer, not just through cutting edge scientific discovery but through the work of our drug discovery colleagues at Sussex and ICR who are creating new medicines that have a real impact in the treatment and diagnosis of major human diseases.

"The more we discover, the more intelligent our weapons against cancer become, and the closer we get to the day when cures for this major killer will be found."

The Institute of Cancer Research, London, discovers more new cancer drugs than any other academic centre in the world. Since 2005, the Institute of Cancer Research (ICR) has successfully discovered 17 drug candidates, and progressed seven drugs discovered at the ICR into clinical trials.

Professor Paul Workman, Chief Executive of The Institute of Cancer Research, London, said:

"It is faults in their DNA repair systems that allow cancer cells to accumulate mutations so rapidly, and to evolve in ways that make them hard to treat. But these deficiencies in DNA repair can also leave cancers vulnerable to attack, and this analysis shows how we could design drugs to further weaken cancer cells' repair systems - and drive them to their deaths."

Professor Laurence Pearl, Head of the School of Life Sciences at the University of Sussex, and a co-author of the research, commented: "I am particularly delighted with the burgeoning collaboration between world-class research groups at Sussex and ICR which will be critical to bringing forward a new class of anti-cancer drugs to target the DNA damage response."

###

The study was jointly funded by the Medical Research Council, via the Daphne Jackson Trust, and Cancer Research UK. Dr Pearl was able to carry out her role in the research thanks to a scholarship from the Daphne Jackson Trust, which promotes women returning to science after career breaks.

Notes for editors

University of Sussex press office contacts: James Hakner and Jacqui Bealing - press@sussex.ac.uk, 01273 678888.

'Therapeutic opportunities within the DNA damage response' is published 24 February 2015 in Nature Reviews Cancer.

The University of Sussex is among the leading research universities in the UK, with 98 per cent of its research rated as world leading, internationally excellent or internationally recognised (REF 2014).

The University has counted among its faculty three Nobel Prize winners, 13 Fellows of the Royal Society, six Fellows of the British Academy and a winner of the prestigious Crafoord Prize.

The University of Sussex's Translational Drug Discovery Group (TDDG) works closely with pharmaceutical companies and has ongoing research projects worth more than £8 million, funded by Cancer Research UK, the European Union, the Medical Research Council (MRC) and the Wellcome Trust.

The Institute of Cancer Research, London, is one of the world's most influential cancer research institutes.

Scientists and clinicians at The Institute of Cancer Research (ICR) are working every day to make a real impact on cancer patients' lives. Through its unique partnership with The Royal Marsden NHS Foundation Trust and 'bench-to-bedside' approach, the ICR is able to create and deliver results in a way that other institutions cannot. Together the two organisations are rated in the top four cancer centres globally.

The ICR has an outstanding record of achievement dating back more than 100 years. It provided the first convincing evidence that DNA damage is the basic cause of cancer, laying the foundation for the now universally accepted idea that cancer is a genetic disease. Today it leads the world at isolating cancer-related genes and discovering new targeted drugs for personalised cancer treatment.

As a college of the University of London, the ICR provides postgraduate higher education of international distinction. It has charitable status and relies on support from partner organisations, charities and the general public.

The ICR's mission is to make the discoveries that defeat cancer. For more information visit http://www.icr.ac.uk


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.