News Release

New research suggests Caribbean gorgonian corals are resistant to ocean acidification

First study to analyze the effects of climate scenarios on important Caribbean reef coral

Peer-Reviewed Publication

University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science

<i>Eunicea fusca</i>

image: A new study on tropical shallow-water soft corals, known as gorgonians, found that the species were able to calcify and grow under elevated carbon dioxide concentrations. These results suggest that Caribbean gorgonian corals may be more resilient to the ocean acidification levels projected by the end of the 21st century than previously thought. view more 

Credit: Juan A. Sanchez - Universidad de los Andes, Bogota Colombia

MIAMI - A new study on tropical shallow-water soft corals, known as gorgonians, found that the species were able to calcify and grow under elevated carbon dioxide concentrations. These results suggest that Caribbean gorgonian corals may be more resilient to the ocean acidification levels projected by the end of the 21st century than previously thought.

An international team of scientists, including from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, tested the effects of elevated CO2 concentrations on the growth and calcification rates of the sea rod, Eunicea fusca, a type of gorgonian or soft coral found throughout the Bahamas, Bermuda, South Florida and into the Gulf of Mexico.

Researchers collected E. fusca specimens from Big Pine Shoals in the Florida Keys to simulate a range of predicted future ocean acidification conditions - CO2 concentrations from 285-2,568 parts per million (pH range 8.1-7.1) - during a four-week experiment at the UM Rosenstiel School's Coral Reefs and Climate Change Laboratory. Eunicea fusca showed a negative response to calcification under elevated CO2 concentrations, but growth and calcification did not stop under any of the CO2 levels used in the study.

"Our results suggest that gorgonian coral may be more resilient than other reef-dwelling species to the ocean acidification changes that are expected to occur in the oceans as a result of climate change," said Chris Langdon, UM Rosenstiel Professor and Director of the Coral Reefs and Climate Change Laboratory. "These findings will allow us to better predict the future composition of coral reef communities under the current "business-as-usual scenario."

The results showed that calcification dramatically declined at extremely high levels of CO2 but not at mid-elevated levels, which led the study's authors to suggest that tropical gorgonian corals may be more resilient to the future levels of ocean acidification expected to occur during this century. Gorgonian corals form complex structures that provide essential habitat for other important reef-dwelling organisms.

Based upon studies of encrusting coralline algae and echinoderms, scientists have suggested that corals with skeletons formed by high-magnesium calcite may be more susceptible to the impacts of ocean acidification than aragonite-depositing corals. This is the first study to find that not all high-magnesium calcite-secretors, such as soft corals, are more susceptible than aragonite secretors, such as stony reef-building corals.

The absorption of carbon dioxide by seawater, which results in a decline in pH level, is termed ocean acidification. The increased acidity in the seawater is felt throughout the marine food web as calcifying organisms, such as corals, oysters and sea urchins, find it more difficult to build their shells and skeletons making them more susceptible to predation and damage. According to the IPCC 5th Assessment Repot, year 2100 projected changes in surface ocean chemistry compared to preindustrial values are expected to fall by 0.14 to 0.43 units depending on whether there is global effort to sharply curtail emission or if emissions continue to increase each year.

###

The paper, titled "Reponses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions," was published in the online first version of the journal Coral Reefs. http://link.springer.com/article/10.1007/s00338-014-1241-3

The study co-authors include: Carlos E. Gómez and Juan A. Sànchez of the Universidad de los Andes in Bogotà, Columbia; Valerie J. Paul and Raphael Ritman-Williams of the Smithsonian Institution in Fort Pierce, FL., and Chris J. Langdon and Nancy Muehllehner of the UM Rosenstiel School of Marine and Atmospheric Science.

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.