News Release

Protection of the mouse gut by mucus depends on microbes

Peer-Reviewed Publication

EMBO

HEIDELBERG, 18 December 2014 - The quality of the colon mucus in mice depends on the composition of gut microbiota, reports a Swedish-Norwegian team of researchers from the University of Gothenburg and the Norwegian University of Life Sciences in Oslo. The work, published in EMBO reports, suggests that bacteria in the gut affect mucus barrier properties in ways that can have implications for health and disease.

"Genetically similar mice with subtle but stable and transmissible intestinal microbiota showed unexpectedly large differences in the inner colon mucus layer. The composition of the gut microbiota has significant effects on mucus properties," says Malin E.V. Johansson from the University of Gothenburg who led the study.

By sequencing the microbiota and examining the 16S ribosomal RNA genes, the researchers discovered that two mouse colonies maintained in two different rooms in the same specific pathogen-free facility had different gut microbiota. They also had a mucus structure that was specific for each colony. Whereas one colony developed mucus that was not penetrable to bacteria, the other colony had an inner mucus layer permeable to bacteria.

Each group of mice had a stable population of bacteria that could be maternally transmitted: The group with impenetrable mucus had increased amounts of Erysipelotrichi bacteria, while the other group had higher levels of Proteobacteria and TM7 bacteria in the distal colon mucus. Free-living mice from the forest had mucus similar in composition to that found in mice in the non-penetrable colony. The authors also showed that the bacterial composition could be modulated to a small extent through the diet.

"The results from the free-living mice strongly argue for the importance of a well-developed inner mucus layer that efficiently separates bacteria from the host epithelium for the overall health of the mice," says Johansson.

The different mucus properties were recreated by transplanting the microbial communities into germ-free mice. "After recolonisation of germ-free mice with the different microbiota we observed the same structural and functional differences in their mucus properties," added Johansson.

Mucus is our outermost barrier to our microbiota in the gut. If the mucus fails to offer a protective barrier it can allow more bacteria to come in contact with our epithelium in a way that can trigger colon inflammation. Diseases such as ulcerative colitis show an increased incidence in the Western world and this study emphasizes the importance of the composition of the microbiota for an impenetrable protective mucus barrier.

###

The gut microbiota composition impairs the colon inner mucus layer barrier

Hedvig E Jakobsson, Ana M Rodríguez-Piñeiro, André Schütte, Anna Ermund, Preben Boysen, Mats Bemark, Felix Sommer, Fredrik Bäckhed, Gunnar C Hansson, and Malin E V Johansson.

Read the paper: http://embor.embopress.org/content/early/2014/12/17/embr.201439263

doi: 10.15252/embr.201439263

Further information on EMBO reports is available at http://www.embor.embopress.org

Media Contacts
Yvonne Kaul
Communications Officer
yvonne.kaul@embo.org

Nonia Pariente
Editor, EMBO reports
Tel: +49 6221 8891 305
nonia.pariente@embo.org

About EMBO

EMBO is an organization of more than 1700 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe. 
For more information: http://www.embo.org


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.