News Release

Researchers determine why tendons break down with age

Peer-Reviewed Publication

Queen Mary University of London

Scientists at Queen Mary University of London (QMUL) have identified differences in the proteins present in young and old tendons, in new research that could guide the development of treatments to stop tissue breakdown from occurring.

Tendon structure in horses is similar to humans, and both face common injuries. The researchers used a horse model to undertake a thorough analysis of all the proteins and protein fragments present in healthy and injured tendons.

Working with scientists at the University of Liverpool, the team collected data, which shows that healthy, older tendons have a greater amount of fragmented material within them, suggesting accumulated damage over time that has not been fully repaired.

When examining injured tendons, the team found even more evidence of protein breakdown. However, whilst in younger tendons, the cells were active and trying to repair the damage, there was an accumulation of different protein fragments in older tendons. This suggests the cells somehow lose the ability to repair damage during the ageing process.

"Normal function of tendons, such as the Achilles, is important not just for Commonwealth athletes but for everyday activities for ordinary people," said co-author Dr Hazel Screen, a Reader in biomedical engineering at QMUL's School of Engineering and Materials Science and Institute of Bioengineering.

She added: "This is the first study of its kind, and provides evidence that the increased risk of tendon injury with ageing might be due to a reduced ability of tendon cells to repair damage effectively."

This novel information is an important first step towards understanding how our tissues break down as we age and could help us find ways to prevent it occurring in the future.

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.