News Release

Contextuality puts the 'magic' in quantum computing

Peer-Reviewed Publication

CIFAR

A new theoretical advance explains where the power of quantum computation comes from, and will help researchers design and build better computers and algorithms.

The strange properties of quantum mechanics give quantum computers the potential to perform some computations exponentially faster than conventional computers. But where the extra power comes from – and how best to take advantage of it – is in many ways still an open question.

A new paper in the journal Nature by CIFAR Fellow Joseph Emerson of the program in Quantum Information Science, along with colleagues at the Institute of Quantum Computing at the University of Waterloo, is a step towards solving the questions.

The paper shows that a quantum property called contextuality is the key. Contextuality refers to the fact that in quantum systems, a measurement will necessarily affect the thing being measured. For instance, if you want to measure the spin of a particle, it's wrong to think that there is a "real" spin just waiting to be revealed. Instead, the very act of measuring the spin helps determine what it will be.

"One way of thinking about contextuality is that inevitably measurements involve some kind of disturbance. I'm not just learning about some definite property the system had prior to the measurement. I can be learning about some property the system had, but only in a way that depends on how I did the measurement."

One of the leading approaches for quantum computing uses a technique called fault-tolerant stabilizer computation. It's a way of correcting errors that occur in quantum computers as the quantum states interact with the environment. By using a process called "magic-state distillation," quantum computers can be made to function dependably despite the noise introduced by the environment.

Emerson's paper shows that the only kinds of "magic states" that will yield quantum computational power are those that rely on contextuality.

"Ultimately this should be a tool for experimentalists, to set the bar for what they have to achieve if they want to build a quantum computer that is useful, perhaps as a litmus test for a quantum computer's viability," Emerson says.

Although the mathematical proof of the power of contextuality is limited for now to a particular kind of quantum computation, Emerson thinks that future work might show that it's a general feature of all quantum computation.

Emerson says that the result builds on earlier work from a collaboration with CIFAR Senior Fellow Daniel Gottesman (Perimeter Institute), which grew out of contact they had through the CIFAR program.

"The CIFAR quantum information network and CIFAR funding were both instrumental to developing this result, which was a collective effort from several members of my research group," Emerson says.

###

The other authors of the current paper are Mark Howard, Joel Wallman, both at the University of Waterloo, and Victor Veitch, now at the University of Toronto. The article will be available online at Nature in advance of publication. It can be accessed at http://dx.doi.org/10.1038/nature13460.

About CIFAR

CIFAR brings together extraordinary scholars and scientists from around the world to address questions of global importance. Based in Toronto, Canada, CIFAR is a global research organization comprising nearly 400 fellows, scholars and advisors from more than 100 institutions in 16 countries. The Institute helps to resolve the world's major challenges by contributing transformative knowledge, acting as a catalyst for change, and developing a new generation of research leaders. Established in 1982, CIFAR partners with the Government of Canada, provincial governments, individuals, foundations, corporations and research institutions to extend our impact in the world.

CIFAR's Quantum Information Science program unites computer scientists and physicists in an effort to harness the strange and fascinating properties of the quantum world, where the mere act of observing an object changes in nature, with the aim of building quantum computers.

Contacts:

Joseph Emerson

Associate Professor, University of Waterloo
jemerson@uwaterloo.ca
(519) 888-4567 ext. 35424

Lindsay Jolivet

Writer & Media Relations Specialist
Canadian Institute for Advanced Research
lindsay.jolivet@cifar.ca
416-971-4876


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.