News Release

Oldest existing lizard-like fossil hints at scaly origins

Peer-Reviewed Publication

University College London

Vellberg Jaw Movie

video: The fossilized remains of a reptile closely related to lizards are the oldest yet to be discovered. Two new fossil jaws discovered in Vellberg, Germany provide the first direct evidence that the ancestors of lizards, snakes and tuatara (known collectively as lepidosaurs), were alive during the Middle Triassic period -- around 240 million years ago. The new fossil finds predate all other lepidosaur records by 12 million years. The findings are published in BMC Evolutionary Biology. This video gives a 360 degree view of the fossil. view more 

Credit: Marc Jones/UCL

The fossilised remains of a reptile closely related to lizards are the oldest yet to be discovered.

Two new fossil jaws discovered in Vellberg, Germany provide the first direct evidence that the ancestors of lizards, snakes and tuatara (known collectively as lepidosaurs), were alive during the Middle Triassic period – around 240 million years ago.

The new fossil finds predate all other lepidosaur records by 12 million years. The findings are published in BMC Evolutionary Biology.

The international team of scientists who dated the fossil jaws have provided evidence that lepidosaurs first appeared after the end-Permian mass extinction event, a period when fauna began to recover and thrive in the more humid climate.

Lead author Dr Marc Jones, who conducted the research at UCL, explained: "The Middle Triassic represents a time when the world has recovered from the Permian mass extinction but is not yet dominated by dinosaurs. This is also when familiar groups, such as frogs and lizards, may have first appeared."

The small teeth and lightly built jaws suggest that the extinct animal preyed on small insects. The new fossils are most closely related to the tuatara, a lizard-like reptile.

Tuatara can be found on 35 islands lying off the coast of New Zealand and were recently reintroduced to the mainland. However, they are the sole survivors of a group that was once as globally widespread as lizards are today. Tuatara feed on beetles, spiders, crickets and small lizards, also enjoying the occasional sea bird.

Today, there are over 9,000 species of lizards, snakes and tuatara. Knowing when the common ancestor of this grouping first appeared is crucial for understanding the ecological context in which it first evolved as well as its subsequent diversification.

To establish the age of the fossil remains, biologists use a dating technique known as a "molecular clock". This method compares the amount of genetic divergence between living animals, caused by changes in their DNA sequences that have accumulated since they split from a common ancestor. These mutations occur fairly regularly, ticking along at a clock-like rate. However, for the clock to convert genetic differences into geological time, it has to be calibrated using one or more fossils of known relationship and time.

Molecular clocks have been used by biologists to answer questions as important as when the first modern humans emerged, and when humans and chimpanzees shared a common ancestor. The new fossil jaws can improve molecular dating estimates of when reptiles began to diversify into snakes, lizard and tuatara, and when the first modern lizards inhabited the earth. Previous estimates have varied over a range of 64 million years and the team are keen to help narrow this down.

"Some previous estimates based on molecular data suggested that lizards first evolved 290 million years ago," said second author Cajsa Lisa Anderson, University of Gothenburg. "To a palaeontologist this seems way too old and our revised molecular analysis agrees with the fossils."

Revised molecular dating in light of this new fossil find now suggests lizards began to diversify into most of the modern groups we recognise today, such as geckos and skinks, less than 150 million years ago in the Cretaceous period, following continental fragmentation.

The specimens were collected and initially identified by Professor Rainer Schoch from the Staatliches Museum für Naturkunde in Stuttgart, where the specimens are now registered.

Scientists anticipate that the Vellberg site will yield yet more fossil discoveries in the future, broadening our knowledge of the vertebrate fossil record.

Co-Author Professor Susan Evans, from the UCL Department of Cell and Developmental Biology, said: "The fossil record of small animals such as lizards and frogs is very patchy. Hopefully, this new fossil site in Germany will eventually give us a broader understanding of what was going on at this time."

###

Notes for Editors

1. For more information or to speak to Dr Marc Jones, please contact Clare Ryan in the UCL Media Relations Office on tel: +44 (0)20 3108 3846, mobile: +44 (0)7747 565 056, out of hours +44 (0)7917 271 364, e-mail: clare.ryan@ucl.ac.uk.

2. Images and short video clips of the fossilised jaws are available from UCL Media Relations.

3. 'Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara)' will be published in BMC Evolutionary Biology on 25 September 2013.

4. Journalists can obtain copies of the paper by contacting the UCL Media Relations Office.

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender and the first to provide systematic teaching of law, architecture and medicine.

We are among the world's top universities, as reflected by our performance in a range of international rankings and tables. According to the Thomson Scientific Citation Index, UCL is the second most highly cited European university and the 15th most highly cited in the world.

UCL has nearly 27,000 students from 150 countries and more than 9,000 employees, of whom one third are from outside the UK. The university is based in Bloomsbury in the heart of London, but also has two international campuses – UCL Australia and UCL Qatar. Our annual income is more than £800 million.

http://www.ucl.ac.uk | Follow us on Twitter @uclnews | Watch our YouTube channel YouTube.com/UCLTV


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.